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I. Introduction 

 
The Groves mechanisms hold enormous theoretical value in mechanism design 

theory. They are outcome efficient and dominant strategy incentive compatible, that 
is, they maximize the sum of players’ valuations from the allocation and induce 
truth-telling as a dominant strategy equilibrium. Moreover, Green and Laffont 
(1977), Walker (1978), Holmström (1979) and Carbajal (2010) have shown that 
every outcome efficient and dominant strategy incentive compatible mechanism is a 
Groves mechanism. In particular, Green and Laffont (1977) have proven the 
uniqueness result both for unrestricted domains and for a restricted domain 
containing continuous valuation functions, whereas Walker (1978) has proven the 
uniqueness result for the class of concave valuation functions on a convex subset of 
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a Euclidean space. Holmström (1979) has subsequently established a result for any 
smoothly connected domain of valuation functions, which thus implies the previous 
results. Carbajal (2010) has provided a necessary and sufficient condition for the 
uniqueness, which naturally implies most of the previous results.1 Therefore, when 
searching for mechanisms that additionally satisfy other desirable properties, such as 
individual rationality and budget balance, we can restrict our attention to Groves 
mechanisms.2 

Given the importance of the uniqueness result, it is an interesting research 
agenda to extend the uniqueness of Groves mechanisms to dynamic environments 
in which players’ private information evolves over time and decisions are made in 
each period.3 Cavallo (2008) has extended the uniqueness result for unrestricted 
domains, following the method of proof in Green and Laffont (1977). The purpose 
of the present paper is to investigate whether the uniqueness of Groves mechanisms 
in dynamic environments continues to hold when the domain is further restricted.  

In the next section, we carefully describe dynamic environments, and then define 
the class of dynamic Groves mechanisms, which is a dynamic version of the class of 
static Groves mechanisms, for Markovian environments and show that they are 
outcome efficient and periodic ex-post incentive compatible. The class of dynamic 
Groves mechanisms encompasses the dynamic pivot mechanism of Bergemann and 
Välimäki (2010) as well as the team mechanism of Athey and Segal (2013), two of 
the most famous mechanisms in the dynamic mechanism design literature. In 
Section 3, we specify conditions for the restricted domains of valuations and 
examine necessary and sufficient conditions for the uniqueness of dynamic Groves 
mechanisms. Our approach is to appropriately define the total valuation function, 
which is the expected discounted sum of each period’s valuation function from the 
allocation and thus a dynamic counterpart of the static valuation function, and then 
to port the results for static Groves mechanisms to the dynamic setting. In particular, 
we port the recent results of Carbajal (2010) which provide a necessary and 
sufficient condition for the uniqueness of Groves mechanisms as well as a sufficient 
condition on restricted domains. The final section contains a brief summary.  

The uniqueness of dynamic Groves mechanisms can be interpreted as a 
characterization of payoff equivalence for outcome efficient and periodic ex-post 
efficient dynamic mechanisms. The payoff equivalence result is well-established in 
____________________ 

1 With certain assumptions on the domain, Williams (1999) and Krishna and Perry (2000) have 
proven the result that every outcome efficient and Bayesian incentive compatible mechanism is payoff-
equivalent to some Groves mechanism from an interim perspective. 

2 Some authors use the term ‘efficiency’ to mean outcome efficiency. Others use efficiency to mean 
outcome efficiency plus budget balance. We follow the latter convention. Thus, a mechanism is 
efficient when it maximizes the sum of players’ valuations from the allocation and it does not run a 
monetary deficit. 

3 See Bergemann and Said (2010), Vohra (2012), Pavan (2017) and Bergemann and Välimäki (2019) 
for surveys on dynamic mechanism design literature. 
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mechanism design literature: Representative works include, besides the papers 
mentioned above, Krishna and Maenner (2001) and Milgrom and Segal (2002) for 
static environments and Pavan et al. (2014), Skrzypacz and Toikka (2015) and 
Bergemann and Strack (2015) for dynamic environments. Compared to the payoff 
equivalence results for restricted domains in the dynamic mechanism design 
literature, the current paper deals with multi-dimensional type spaces as well as 
periodic ex-post incentive compatibility.4 

 
 

II. The Dynamic Groves Mechanism  
 

2.1. The Environment  
 
There is a set {1, , }I n= K  of players and a countably infinite number of 

periods, indexed by (0,1, }tÎ K . Player i ’s type in period t  is t
i iq ÎQ . We 

assume that this is private information. Let 1( , , )t t t
nq q q= K  and 1

n
i i=Q =Õ Q .5 

We assume that Q  is a Borel space, i.e., a Borel subset of a complete and separable 
metric space. Let ( )QB  be the Borel s -algebra on Q . After tq ÎQ  is realized 
in period t , a public action ta AÎ  is determined. We assume that A  is a Borel 
space, with the Borel s -algebra ( )AB .6 In addition, let t

iz RÎ  be a monetary 
transfer from player i  in period t . Given sequences 0 1( , , )q q K  of type profiles 
and 0 1( , , )a a K  of actions, together with 0 1( , , )i iz z K  of i ’s monetary transfers, 
player i ’s total payoff is  

 

0

( ( , ) )t t t t
i i i

t

v a zd q
¥

=

-å , 

 
where (i) d  is a common discount factor and 1d < , and (ii) ( )iv ×  is a 
measurable (one-period) valuation function. The valuation function is usually 
called as the reward function in the Markov decision process literature. Note that 
we deal with the private-values environment in that player i ’s valuation function 

____________________ 
4 Other papers cited in this paragraph consider perfect Bayesian incentive compatibility and assume 

that the type space is one-dimensional in each period, mainly due to their interest in revenue 
maximization problem. Needless to say, these papers differ in other respects and also they are more 
general than the current paper in other aspects. Please refer to the original papers for details. Please 
refer also to Carbajal (2010) for a discussion on the significance of his results in comparison to other 
payoff equivalence results in static mechanism design. 

5 We may include public information, say 0 0
tq ÎQ , to be more realistic. We dispense with this 

additional notation for clearer presentation of the main idea. 
6 We impose the assumption that Q  and A  are Borel spaces to employ some of the results in 

Hernández-Lerma and Lasserre (1996). See footnotes 8 and 10. 
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depends only on player i ’s type but not other players’ types. Note also that we deal 
with the time-separable environment in that this function depends only on player 
i ’s type in the current period but not other periods. We assume that ( )iv ×  is 
bounded, that is, | ( , )|i iv a Cq £ < ¥  for all iq  and a .  

The dynamic evolution of players’ types is represented by a stochastic kernel. Let 
( | , )t tp B aq  for ( )BÎ QB  be the conditional probability that the type profile lies 

in B  in period 1t+  when the type profile is tq  and the action is ta  in period 
t . We have (i) ( | , )t tp aq×  is a probability measure on Q  for each fixed ( , )t taq , 
and (ii) ( | , )p B × ×  is a measurable function with respect to the product s -algebra 

( )AQ´B  for each fixed ( )BÎ QB . We assume that ( | , )p × × ×  is independent 
across players in the sense that 1( | , ) ( | , )n

i i i ip a p aq q q q=¢ ¢= Õ . Observe that, except 
for the fact that q  is private information, this environment fits into a Markov 
decision process with Q  being the set of states.  

 
2.2. The General Mechanism and the Outcome Efficient Policy  

 
We focus attention on dynamic direct mechanisms that ask each player to report 

his type (i.e., state) in each period and these reports are publicly observable. Let t
ir  

denote player i ’s report in period t , which may or may not be equal to his true 
type t

iq . Let  
 

0 0 0 1 1 1 1 1 1( , , , , , , , , , , )t t t t t
i i i i ih r a r a r aq q q q- - -= K  

 
be a private history of player i  in period t , where 1( , , )s s s

nr r r= K  for 0, ,s = K
1t-  is a report profile, and let t

iH  be the set of all such histories. A (pure) 
strategy for player i  in period t  is a measurable function ˆ :t t

i i ir H ®Q . A 
strategy is truth-telling if ˆ ( )t t t

i i ir h q=  for all t
ih . In addition, let  

 
0 0 1 1 1 1( , , , , , , , )t t t th r a r a r a r- -= K  

 
be a public history in period t  and let tH  be the set of all such histories. Observe 
that, when players adopt the truth-telling strategy, the private histories do not 
contain more information than the public histories on the equilibrium path. Since 
we are mainly concerned with incentive compatible mechanisms in which the 
truth-telling strategy is an equilibrium, we will henceforth not distinguish between 
true states and reported states (mainly to save notations) except when explicitly 
stating otherwise.  

In each period, the mechanism decides the action based on the actions chosen up 
to the previous period and the reports up to the beginning of the current period. 
Thus, when players adopt the truth-telling strategy, a deterministic (history-



Kiho Yoon: The Uniqueness of Dynamic Groves Mechanisms on Restricted Domains 267

dependent) decision rule of the mechanism in period t  is a measurable function 
ˆ :t ta H A® . A special class of decision rule is the deterministic Markovian decision 
rule that chooses an action based only on the current state, i.e., ˆ :ta AQ® .7 
Moreover, a randomized decision rule ˆta  specifies a probability distribution on the 
set of actions. Randomized decision rules may be history-dependent or Markovian. 
A policy of the mechanism is a sequence of decision rules, that is, a policy is 

0 1ˆ ˆ( , , )a ap = K . Let Õ  be the set of all policies.  
An outcome efficient policy is p *ÎÕ  that maximizes the expected discounted 

sum of players’ valuations. That is,  
 

0 1

arg max ( , )
n

t t t
j j

t j

E v ap
qp

p d q
¥

*

ÎÕ
= =

é ù
Î ê ú

ë û
å å % %  

 
for every q ÎQ .8 

In addition, the mechanism specifies the monetary transfers based on public 
histories. A deterministic (history-dependent) transfer rule of the mechanism in 
period t  is a collection of measurable functions ˆ{ : }t t

i i Iz H R Î® . Let 1
ˆ ˆ( ,t tz z=

ˆ, )t
nzK . Markovian transfer rules and randomized transfer rules can be defined 

similarly. In summary, a dynamic direct mechanism is represented by a family of 
decision rules and monetary transfer rules, 0

ˆ ˆ{ , }t t
ta z ¥
= .  

We call a policy stationary if ˆ ˆta a=  for all t . A stationary policy has the form 
ˆ ˆ( , , )a ap = K , which is denoted by â¥ . For the stationary environment considered 

in this paper,9 we can restrict our attention to deterministic stationary policies when 
finding a policy that maximizes the expected discounted sum of players’ 
valuations.10 An outcome efficient policy thus has the form ( )ap * * ¥=  where :a*

AQ® . We can also restrict our attention to stationary transfer rules.  
 
 

____________________ 
7 For the definition of Markovian decision rule, please refer to page 21 of Puterman (2005) or page 

20 of Hernández-Lerma and Lasserre (1996). It is called Markovian since it induces a Markov process 
over the states. 

8 We will assume throughout that the relevant maximum is attained without specifying sufficient 
conditions. This assumption is valid when A  is compact, ( , )i iv aq  is bounded and upper-
semicontinuous on A  for all iq , and ( | , )p aq q¢  is strongly continuous, i.e., ( , ) ( )g a fq q

Q
¢º ò

( | , )p d aq q¢  is continuous and bounded on AQ´  for every measurable bounded function 
:f RQ® . Other sufficient conditions may also guarantee the existence of an outcome efficient 

policy p * . See Theorem 4.2.3 of Hernández-Lerma and Lasserre (1996) and the discussion preceding 
it. 

9 The environment is stationary since both the valuation function ( )iv ×  for all i  and the 
stochastic kernel ( | )p × ×  do not vary with t . 

10  See Theorem 4.2.3 of Hernández-Lerma and Lasserre (1996). Note that a deterministic 
stationary policy is a deterministic Markovian policy. 
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2.3. The Dynamic Groves Mechanism  
 
Define the total social welfare function :W RQ®  recursively by the following 

optimality equation (or Bellman equation):  
 

1

( ) ( , ( )) ( ) ( | , ( ))
n

j j
j

W v a W p d aq q q d q q q q* *

Q
=

¢ ¢= +å ò . 

 
Note that we define ( )W q  along an outcome efficient policy ( )ap * * ¥= . We can 
also define player i ’s total valuation function ( )iV q  recursively as  

 
( ) ( , ( )) ( ) ( | , ( ))i i i iV v a V p d aq q q d q q q q* *

Q
¢ ¢= + ò   

 
given ( )ap * * ¥= . Observe that  

 
( ) ( , ( )) ( , ( )) ( | , ( ))i i i i iV v a v a p d aq q q d q q q q q* * *

Q
¢ ¢ ¢= + ò  

2 ( , ( )) ( | , ( )) ( | , ( ))i iv a p d a p d ad q q q q q q q q* * *

Q Q
¢¢ ¢¢ ¢¢ ¢ ¢ ¢+ +ò ò L . 

 
Likewise, we can define the total valuation function of players other than i  
recursively as  

 
( ) ( , ( )) ( ) ( | , ( ))i j j i

j i

V v a V p d aq q q d q q q q* *
- -Q

¹

¢ ¢= +å ò  

 
given ( )ap * * ¥= . Note that we use the usual notational convention that the 
subscript i-  pertains to players other than i . Thus, 1 1 1( , , , , ,i i iq q q q- - += K K

),nq i j i j- ¹Q =Õ Q , and so on. We now define dynamic Groves mechanisms. We 
note that Cavallo (2008) defined dynamic Groves mechanisms earlier.  

 
Definition 1.  A dynamic Groves mechanism is a dynamic direct mechanism with 
an outcome efficient policy ( )ap * * ¥=  and a stationary total transfer rule for 
player 1, ,i n= K  given as  

 
( ) ( ) ( )i i i iZ Vq q q*

- -= - +F  
 

for some :i i R-F Q ® .  
Note that ( )iF ×  does not depend on iq . If we recall the terminology of 

d’Aspremont and Gérard-Varet (1979), the dynamic Groves mechanism is a 
distribution mechanism since the total transfer rule is given as the difference between 
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( )iV q-  and the total distribution rule ( )i iq-F . In addition, the total distribution 
rule ( )i iq-F  is discretionary because it does not depend on iq .  

Observe that player i ’s total payoff in a dynamic Groves mechanism is ( )iV q -
( ) ( ) ( )i i iZ Wq q q*

-= -F . Let  
 

( ) ( ) ( )i i iY Wq q q-= -F . 

 
We can define player i ’s (one-period) payoff ( )iy q  by the identity  

 
( ) ( ) ( ) ( | , ( ))i i iY y Y p d aq q d q q q q*

Q
¢ ¢= + ò . 

 
We can also define ( )i iq-F  in terms of player i ’s (one-period) distribution rule 

:i i Rf -Q ®  and a given deterministic Markovian decision rule ˆ :i ia A-Q ®  as 
 

ˆ( ) ( ) ( ) ( | , ( ))
i

i i i i i i i i i i ip d aq f q d q q q q
-

- - - - - - -Q
¢ ¢F = + Fò , 

 
that is,  

 
ˆ( ) ( ) ( ) ( | , ( ))

i
i i i i i i i i i i ip d aq f q d q q q q

-
- - - - - - -Q

¢ ¢F = + Fò  

2 ˆ ˆ( ) ( | , ( )) ( | , ( ))
i i

i i i i i i i i i ip d a p d ad f q q q q q q q
- -

- - - - - - -Q Q
¢¢ ¢¢ ¢ ¢ ¢+ +ò ò L . 

 
Thus,  

 
( ) ( ) ( ) ( ( ) ( )) ( | , ( ))i i i i iy W W p d aq q q d q q q q q*

- -Q
¢ ¢ ¢= -F - -Fò  

1

( , ( )) ( ) ( | , ( ))
n

j j
j

v a W p d aq q d q q q q* *

Q
=

¢ ¢= +å ò   

ˆ( ) ( ) ( | , ( ))
i

i i i i i i i i ip d af q d q q q q
-

- - - - - -Q
¢ ¢- - Fò  

( ( ) ( | , ( )) ( ) ( | , ( ))
i

i i i i iW p d a p d ad q q q q d q q q q
-

* *
- - - -Q Q

¢ ¢ ¢ ¢- + Fò ò  

1

( , ( )) ( )
n

j j i i
j

v aq q f q*
-

=

= -å  

( )ˆ( ) ( | , ( )) ( ) ( | , ( ))
i i

i i i i i i i i i i i ip d a p d ad q q q q q q q q
- -

*
- - - - - - - - -Q Q
¢ ¢ ¢ ¢+ F - Fò ò . 

 
Then, the (one-period) monetary transfer rule :iz R* Q®  of a dynamic Groves 
mechanism can be defined as  
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( ) ( , ( )) ( )i i i iz v a yq q q q* *= -  

( ) ( , ( ))i i j j
j i

v af q q q*
-

¹

= -å  

( )ˆ( ) ( | , ( )) ( ) ( | , ( ))
i i

i i i i i i i i i i i ip d a p d ad q q q q q q q q
- -

*
- - - - - - - - -Q Q
¢ ¢ ¢ ¢+ F - Fò ò . 

 
Note that the transfer ( )iz q*  depends on the report of player i  only through the 
determination of the action ( )a q* , which is a prominent feature of the static Groves 
mechanisms. Observe that we may alternatively define dynamic Groves 
mechanisms using the (one-period) monetary transfer rule as follows:  
 
Definition ¢1 .  A dynamic Groves mechanism is a dynamic direct mechanism 
with an outcome efficient policy ( )ap * * ¥=  and a stationary monetary transfer 
rule for player 1, ,i n= K  given as  

 
 

( ) ( ) ( , ( ))i i i j j
j i

z v aq f q q q* *
-

¹

= -å  

( )ˆ( ) ( | , ( )) ( ) ( | , ( ))
i i

i i i i i i i i i i i ip d a p d ad q q q q q q q q
- -

*
- - - - - - - - -Q Q
¢ ¢ ¢ ¢+ F - Fò ò , 

 
where :i i Rf -Q ®  is player i ’s (one-period) distribution rule, ˆ :i ia A-Q ®  is 
a given deterministic Markovian decision rule, and :i i R-F Q ®  is defined 
recursively as  

 
ˆ( ) ( ) ( ) ( | , ( ))

i
i i i i i i i i i i ip d aq f q d q q q q

-
- - - - - - -Q

¢ ¢F = + Fò . 

 
Two special instances of dynamic Groves mechanisms are outstanding. Firstly, if 
( ) 0i if q- =  and so ( ) 0i iq-F =  for all i  and iq- , then ( )iY q  becomes ( )W q . 

This mechanism is called the team mechanism by Athey and Segal (2013). Secondly, 
if ˆ :i ia A-Q ®  is given as the deterministic decision rule :i ia A*

- -Q ®  that 
maximizes the expected discounted sum 0[ ( , )]t t t

t j i j jE v ap
q d q¥

= ¹å å % %  of the 
valuations of players other than i , and ( )i if q-  is given as ( , ( ))j i j j i iv aq q*

¹ - -å , 
thus ( )i iq-F  is equal to  

 
( ) ( , ( )) ( ) ( | , ( ))

i
i i j j i i i i i i i i i

j i

W v a W p d aq q q d q q q q
-

* *
- - - - - - - - - - -Q

¹

¢ ¢= +å ò , 

 
then ( )iY q  becomes player i ’s total marginal contribution ( ) ( )i iW Wq q- -- .11 
____________________ 

11 Note that ( )i iW q- -  is different from ( )iV q-  defined above. 
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This mechanism is called the dynamic pivot mechanism by Bergemann and 
Välimäki (2010).  

It is easy to establish that dynamic Groves mechanisms are periodic ex-post 
incentive compatible, that is, the truth-telling strategy is a best response for every 
player i  and every true type profile q  in every period t  and private history 

t
ih .12 We note that we cannot have dominant strategy incentive compatibility in 

dynamic settings since the current reports affect the stochastic kernel ( | , )p × × ×  and 
so the future payoffs through the decision rule (̂ )a × . In addition, the notion of ex-
post incentive compatibility is qualified by periodic, as it is ex post with respect to 
the private information up to the current period, say period t , but not with respect 
to the private information in the future. The periodic qualification arises in the 
dynamic environment since a player may receive new information at some later 
period such that in retrospect he would wish to change his report in period t .13  

 
Theorem 1.  A dynamic Groves mechanism is periodic ex-post incentive compatible. 
 
Proof: By the unimprovability principle, it is sufficient to show that player i  does 
not have an incentive to ‘deviate now and then follow the truth-telling strategy 
afterwards.’ Let ( , | )i i i iY r q q-  be player i ’s total payoff when the true type profile 
is ( , )i iq q-  but i  reports ir  this period. Then,14 

 

1

( , | ) ( , ( , )) ( )
n

i i i j j i i i i
j

Y r v a rq q q q f q*
- - -

=

= -å  

ˆ( ) ( | , ( , )) ( ) ( | , ( ))
i

i i i i i i i i iW p d a r p d ad q q q q d q q q q
-

*
- - - - - -Q Q

¢ ¢ ¢ ¢+ - Fò ò  

1

( , ( , )) ( ) ( | , ( , )) ( )
n

j j i i i i i i
j

v a r W p d a rq q d q q q q q* *
- - -Q

=

¢ ¢= + -Få ò . 

 
Observe that ( , | ) ( ) ( ) ( ) ( , | )i i i i i i i i i i iY Y W Y rq q q q q q q q- - -= = -F ³  by the definition 
of ( )W q , so a dynamic Groves mechanism is periodic ex-post incentive compatible. 
Q.E.D. 
 
 
 
 

____________________ 
12 Since it is rather cumbersome to spell out the exact definition of ex-post incentive compatibility, 

we present it in the appendix. 
13 See Bergemann and Välimäki (2010) for a related discussion. 
14 Note well that the transition probability p  depends on the (true) type profile q  and the 

action a , but not directly on the report profile r . It depends on r  indirectly through a . 
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III. The Uniqueness Results  
 
To establish the uniqueness of dynamic Groves mechanisms, we consider a 

particular class of deviations called consistent deviations.15 Note that a deviation in a 
dynamic mechanism is any (reporting) strategy ˆ :t t

i i ir H ®Q  different from the 
prescribed strategy. Thus, a deviation in an incentive compatible mechanism is any 
strategy in which the player misreports his true type in a single or multiple periods. 
In a consistent deviation, after player i  misreports iq  when his true type is iq  
in the current period, he keeps misreporting in all future periods. Hence, a 
consistent deviation is not a local deviation at one point in time, but rather 
represents a global deviation in the sense that the player changes his reports at every 
point in time. Note that the mechanism as well as other players cannot distinguish a 
consistent deviation from the true type realizations starting from iq . That is, the 
same sequences of public decisions and monetary transfers are obtained. This 
makes it possible to evaluate the subsequent payoffs of the truth-telling and the 
consistently deviating player with respect to the same expectation operator. 
Consequently, the consistent deviations completely describe the total payoff starting 
from the current period in any incentive compatible mechanism without the need to 
verify the incentive compatibility conditions via backward induction method.  

It is a standard fact that, given an outcome efficient policy ( )ap * * ¥=  where 
:a A* Q® , we can describe the Markov process 0 1{{ } }t n

i t iq ¥
= =  represented by the 

stochastic kernel 1 1
1( | , ( )) ( | , ( ))t t t n t t t

i i i ip a p aq q q q q q+ * + *
== Õ  alternatively as a 

dynamical system  
 

1 1( , ( ), )t t t t
i i i ik aq q q w+ * +=  

 
for all i NÎ  and {0,1, }tÎ L , where :i i i ik AQ ´ ´W ®Q  is a measurable 
mapping and 1{ }t

i tw ¥
=  is a sequence of independently and identically distributed 

iW -valued random variables for some measurable space iW , and independent of 
the initial type 0

iq .  
 
Definition 2.  A consistent deviation is a deviation in which, after player i  
misreports 0

iq  in period 0 when his true type is 0
iq , he keeps misreporting in all 

periods as  
 

1 0 0 0 1( , ( , ), )i i i i i ik aq q q q w*
-= , 

2 1 1 1 2( , ( , ), )i i i i i ik aq q q q w*
-=  

____________________ 
15 This class of deviations is considered in Pavan et al. (2014), Bergemann and Strack (2015), and 

Esö and Szentes (2017). It is instrumental in rendering the dynamic mechanism design problem 
tractable. 
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0 0 0 1 0 0 0 1 1 2( ( , ( , ), ), ( ( , ( , ), ), ), )i i i i i i i i i i i i ik k a a k aq q q w q q q w q w* * *
- - -= , 

 
and so on. That is, the report in period {1,2, }tÎ L  is recursively given as  

 
1 1 1( , ( , ), )t t t t t

i i i i i ik aq q q q w- * - -
-= .  

 
We are ready to define several total functions using consistent deviations. Given 

0 0 0
1( , , )nq q q= L  and 1( , , )nw w w= L  where 1{ }t

i i tw w ¥
== , let 1 0 0( , ( ,i i i ik aq q q*=

0 1 1 0 0 0 1 2 1 1 1 2 2 1 1 1), ), ( , ( , ), ), ( , ( , ), ), ( , ( , ),i i i i i i i i i i i i i i i i i i ik a k a k aq w q q q q w q q q q w q q q q* * *
- - - -= = =
2 ),iw  and so on for all t

iq  and t
iq  for {1,2, }tÎ L . Define 

 
0 0 0 0

0

( , , ( , ), ) ( , ( , ))D t t t t
i i i i i i i i i

t

V a v aq q q q w d q q q
¥

* *
- - -

=

=å   

 
and  

 

0 0 0 0

0

( , , ( , )) ( , ( , ))C t t t t
i i i i i i i i i

t

V a E v aq q q q d q q q
¥

* *
- - -

=

é ù
= ê ú

ë û
å  

 
where the expectation is taken over w . We also define  

 

0 0 0

0

( , ( , ), ) ( , ( , ))D t t t t
i i i i j j i i

t j i

V a v aq q q w d q q q
¥

* *
- - - -

= ¹

=å å  

 
and  

 

0 0 0

0

( , ( , )) ( , ( , ))C t t t t
i i i i j j i i

t j i

V a E v aq q q d q q q
¥

* *
- - - -

= ¹

é ù
= ê ú

ë û
å å , 

 
as well as  

 
0 0

0

ˆ( , , ) ( , )D t t t
i i i i i i

t

Z zq q w d q q
¥

- -
=

=å  and 0 0( , ) [ ( , )]C D t t
i i i i i iZ E Zq q q q- -=  

 
where ˆ ( )iz ×  is any given (one-period) monetary transfer rule. Note that the last 
four functions do not depend on 0

iq . Define  
 

0 0 0 0 0 0 0 0 0 0( , , ( , )) ( , , ( , )) ( , )C C C
i i i i i i i i i i i i iU a V a Zq q q q q q q q q q* *

- - - - -= -   
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and  
 

0 0 0 0 0 0 0 0 0 0 0( , , ( , )) ( , , ( , )) ( , ( , ))C C C
i i i i i i i i i i i i iW a V a V aq q q q q q q q q q q* * *

- - - - - - -= + . 

 
Observe that, since the environment is stationary and Markov, it does not matter 
whether the period begins in 0t =  or any 0,1,t = L . Hence, we will drop the 
superscript for 0t =  and write ( , , ( , ))C

i i i i iV aq q q q*
- -  and so on. Observe also that 

( , , ( , )) ( , )C
i i i i i i i iV a Vq q q q q q*

- - -=  where the latter is defined in Section 2. Likewise, 
( , ( , )) ( , )C

i i i i i i iV a Vq q q q q*
- - - - -=  and ( , , ( , )) ( , )C

i i i i i iW a Wq q q q q q*
- - -= . Let ( ,i iZ q

) ( , )C
i i i iZq q q- -=  and ( , ) ( , ) ( , )i i i i i i i i iU V Zq q q q q q- - -= - .  
Having defined these total functions, we henceforth follow Carbajal (2010) as 

closely as possible to demonstrate that many of the results for the dynamic setting 
can be obtained by porting the corresponding results of the static mechanism design. 
We need additional assumptions. First, assume that iQ  is an open connected 
subset of ikR . Next, assume that the domain iV  of player i ’s total valuations 
consists of ( , , ( , ))C

i i i i iV aq q q q*
- - ’s that are equi-Lipschitz continuous and regular 

on iQ .  
A family of functions { ( , , ( , )) : | , }C

i i i i i i i i i iV a Rq q q q q q*
- - - -Q ® ÎQ ÎQ  is 

equi­Lipschitz continuous on iQ  if there exists a non-negative number iL  such 
that  

 
ˆ ˆ| ( , , ( , )) ( , , ( , ))| || ||C C

i i i i i i i i i i i i iV a V a Lq q q q q q q q q q* *
- - - -- £ -   

 
for all ˆ, ,i i iq q q- , and iq . As for regularity, given an open set kY RÍ  and a 
function g  on Y  to R , the one-sided directional derivative of g  at y YÎ  in 
the direction of kd RÎ  is defined as 

0( ; ) lim [ ( ) ( )] /D g y d g y d g yl l l+
¯= + - , 

provided this limit exists. The function g  is regular at y YÎ  if it admits one-
sided directional derivatives at y  in any direction d , and g  is regular on Y  if 
it is regular at every y YÎ . Please refer to Carbajal (2010) for a more detailed 
discussion of these concepts. These assumptions in particular imply that the 
following limits exist and are finite:16 

 
( , , ( , ); )

i

C
i i i i iD V a dq q q q q+ *

- -   

0

( , , ( , )) ( , , ( , ))
lim

C C
i i i i i i i i i iV d a V a

l

q l q q q q q q q
l

* *
- - - -

¯

+ -
= , ikd R" Î , 

( , , ( , ); )
i

C
i i i i iD V a dq q q q q- *

- -   

____________________ 
16 Observe that ( , , ( , ); ) ( , , ( , ); )

i i

C C
i i i i i i i i i iD V a d D V a dq qq q q q q q q q- * + *

- - - -= - - . 
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0

( , , ( , )) ( , , ( , ))
lim

C C
i i i i i i i i i iV d a V a

l

q l q q q q q q q
l

* *
- - - -

­

+ -
= , ikd R" Î . 

 
We note that the conditions on ( , , ( , ))C

i i i i iV aq q q q*
- -  are imposed only with 

respect to the outcome efficient decision rule ( )a* × , not with respect to any possible 
decision rule (̂ )a × . We also note that the conditions on ( , , ( , ))C

i i i i iV aq q q q*
- -  can 

be passed over to the conditions on ( , )i iv aq  and ( | , , )i ip B aq q- . Recall that  
 

0 0 0 0( , , ( , ))C
i i i i iV aq q q q*

- -   
0 0 0 1 1 1 1 0 1 1( , ( , )) ( , ( , )) ( | , ( , ))i i i i i i i i i iv a v a p d aq q q d q q q q q q q* * *

- - -Q
= + ò  

2 2 2 2 2 1 1 1 1 0 0 0( , ( , )) ( | , ( , )) ( | , ( , ))i i i i i i i iv a p d a p d ad q q q q q q q q q q q* * *
- - -Q Q

+ +ò ò L . 

 
Hence, for Lipschitz continuity of ( , , ( , ))C

i i i i iV aq q q q*
- - , it is sufficient to assume 

that ( , )i iv aq  is Lipschitz continuous on iQ  and that, there exists a non-negative 
number iL  such that  

 
ˆ ˆ| ( , ) ( | , , ) ( , ) ( | , , )| || ||i i i i i i iw a p d a w a p d a Lq q q q q q q q q q- -Q Q

¢ ¢ ¢ ¢- < -ò ò  

 
for every ˆ, ,i i iq q q- , and every measurable bounded function ( , )w aq .17 Similarly, 
for regularity of ( , , ( , ))C

i i i i iV aq q q q*
- - , it is sufficient to assume that ( , )i iv aq  is 

regular on iQ  and that  
 

0

( , ) ( | , ) ( , ) ( | , )
lim

w a p d d a w a p d a

l

q q q l q q q

l
Q Q

¯

¢ ¢ ¢ ¢+ -ò ò  

 
exists and is finite for every q ÎQ , every direction 1

ikn
id R=ÎÕ , and every 

measurable bounded function ( , )w aq . Other conditions on ( , )iv aq  and ( |p B
, , )i i aq q-  may also lead us to the desired conditions on ( , , ( , ))C

i i i i iV aq q q q*
- - . We 

first prove two straightforward lemmas.  
 
Lemma 1.  Assume that iQ  is an open connected subset of ikR  and that the 
domain iV  of player i ’s total valuations consists of ( , , ( , ))C

i i i i iV aq q q q*
- - ’s that are 

equi-Lipschitz continuous and regular on iQ . If a dynamic direct mechanism with an 
outcome efficient policy ( )ap * * ¥=  and a stationary total transfer rule :iZ RQ®  
is periodic ex-post incentive compatible, then ( , )i i iU q q-  and ( , )i iW q q-  are 
Lipschitz continuous and differentiable almost everywhere on iQ .  

____________________ 
17 See Dufour and Prieto-Rumeau (2012) for a related discussion. 
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Proof: See the appendix.                                         Q.E.D. 
 

Lemma 2.  Assume that iQ  is an open connected subset of ikR  and that the 
domain iV  of player i ’s total valuations consists of ( , , ( , ))C

i i i i iV aq q q q*
- - ’s that are 

equi-Lipschitz continuous and regular on iQ . Let 1( ,{ } )n
i iZp *

=  be an outcome 
efficient and periodic ex-post incentive compatible dynamic direct mechanism. Given 
any i iq- -ÎQ , if ( , )i iW q q-  is regular at i iq ÎQ , then for any direction ikd RÎ  
we have  

 
( , , ( , ); ) ( , ; )

i i

C
i i i i i i iD V a d D W dq qq q q q q q+ * +

- - -£ , 

( , , ( , ); ) ( , ; )
i i

C
i i i i i i iD V a d D W dq qq q q q q q- * -

- - -³ . 

 
Proof: See the appendix.                                         Q.E.D. 

 
An immediate consequence of this lemma is that, if ( , )i iW q q-  is differentiable 

at iq  so that ( , ; ) ( , ; )
i ii i i iD W d D W dq qq q q q+ -

- -=  at iq , then  
 

( , , ( , ); ) ( , , ( , ); )
i i

C C
i i i i i i i i i iD V a d D V a dq qq q q q q q q q- * + *

- - - -³ . 

 
The reverse of this inequality is stated as a property.  

 
Definition 3.  A dynamic direct mechanism with an outcome efficient policy 

( )ap * * ¥=  and a stationary total transfer rule :iZ RQ®  satisfies Property A if, 
for every i , every iq- , and each iq  such that ( , )i iW q q-  is differentiable at iq , 
we have  
 

( , , ( , ); ) ( , , ( , ); )
i i

C C
i i i i i i i i i iD V a d D V a dq qq q q q q q q q- * + *

- - - -£  

 
for any direction ikd RÎ .  
Note: This property corresponds to Property 1 of Carbajal (2010).  
 

When this property is satisfied, Lemma 2 implies that ( , , ( , );
i

C
i i i i iD V aq q q q q- *

- -

) ( , , ( , ); )
i

C
i i i i id D V a dq q q q q+ *

- -=  for any direction ikd RÎ  when ( , )i iW q q-  is 
differentiable. Hence, ( , , ( , ))C

i i i i iV aq q q q*
- -  admits two-sided derivatives with 

respect to iq , which is key for the uniqueness result. 
 

Theorem 2.  Assume that iQ  is an open connected subset of ikR  and that the 
domain iV  of player i ’s total valuations consists of ( , , ( , ))C

i i i i iV aq q q q*
- - ’s that are 

equi-Lipschitz continuous and regular on iQ . Then, any dynamic direct mechanism 
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which is outcome efficient and periodic ex-post incentive compatible is a dynamic Groves 
mechanism if and only if it satisfies Property A.  
 
Proof: For sufficiency, assume that Property A is satisfied, and let 1( ,{ } )n

i iZp *
=  be 

an outcome efficient and periodic ex-post incentive compatible dynamic direct 
mechanism. Define ( , ) ( , ) ( , ( , ))C C C

i i i i i i i i i iZ V aq q q q q q q*
- - - - -F = +  for this 

mechanism. Define also that ( , ) ( , )C
i i i i i iq q q q- -F =F . It suffices to show that 

( , ) ( , )C
i i i i i iq q q q- -F =F  is constant over iQ .  
 
Fix i iq- -ÎQ . Since ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),C C

i i i i i i iU V Z V V Wq q q q q q q q-= - = + -F = -F  
we have ( ) ( ) ( )C

i iW Uq q qF = -  and so ( , )C
i iq-F ×  is Lipschitz continuous and 

differentiable almost everywhere on iQ  by Lemma 1. We claim that for each 
direction ikd RÎ , the two-sided directional derivative of ( , )C

i iq-F ×  in the 
direction of d , denoted by ( , ; )

i

C
i iD dq q-F × , is zero a.e. on iQ , from which it 

follows that ( , )C
i iq-F ×  is constant over iQ . To see this, fix ikd RÎ  and define, 

for each i iq ÎQ , the auxiliary functions sy  and iy  on R  by  
 

( ) ( , , ( , )) ( , ( , )) ( , )C C
s i i i i i i i i i i iV d a V a W dy l q l q q q q q q q l q* *

- - - - - -= + + - + , 

( ) ( , , ( , )) ( , ( , )) ( , )C C C
i i i i i i i i i i i i iV d a V ay l q l q q q q q q q q* *

- - - - - -= + + -F  

( , )i i iU dq l q-- + .  

 
Note that ( ) 0sy l £  for any l  by definition of the total social welfare function 

:W RQ®  and (0) 0sy = . Similarly, ( ) 0iy l £  for any l  by periodic ex-post 
incentive compatibility and (0) 0iy = .  

Suppose iq  is a type in iQ  at which both ( , )iW q-×  and ( , )i iU q-×  are 
differentiable. Then, Property A implies that  

 

0

( ) (0)
0 lim ( , , ( , ); ) ( , ; )

i i

Cs s
i i i i i i iD V a d D W dq ql

y l y q q q q q q
l

- * -
- - -­

-
£ = -  

0

( ) (0)
( , , ( , ); ) ( , ; ) lim 0

i i

C s s
i i i i i i iD V a d D W dq q l

y l yq q q q q q
l

+ * +
- - - ¯

-
£ - = £ . 

 
A similar argument holds if we use iy  above instead. It follows that, for almost 
every type i iq ÎQ , we have 0 0lim ( ) / lim ( ) / 0s il ly l l y l l® ®= = . Hence, a.e. 
on iQ ,  

 

0 0

( , ) ( , ) ( ) ( )
( , ; ) lim lim 0

i

C C
C i i i i i i i s
i i i

d
D dq l l

q l q q q y l y lq q
l l
- -

- ® ®

F + -F -
F = = = . 
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Thus, for any direction ,ikd RÎ  we have ( , ; ) 0
i

C
i i iD dq q q-F =  almost everywhere 

on iQ  as claimed.  
For necessity, assume that any dynamic direct mechanism which is outcome 

efficient and periodic ex-post incentive compatible is a dynamic Groves mechanism. 
Fix an outcome efficient and periodic ex-post incentive compatible dynamic direct 
mechanism 1( ,{ } )n

i iZp *
=  and i iq- -ÎQ . Since this mechanism is a dynamic 

Groves mechanism, ( , )i iq-F ×  is constant over iQ . Hence, for any i iq ÎQ  and 
any direction ikd RÎ , its two-sided directional derivative vanishes, i.e., ( ,

i i iDq qF
; ) 0i dq- = . With the auxiliary function sy  and iy  defined above, we have  

 

0

( , ) ( , )
0 lim i i i i i id

l

q l q q q
l
- -

­

F + -F
=  

 
0

( , ) ( , ) ( , )
lim i i i i i i i iW d U d
l

q l q q l q q q
l

- - -

­

+ - + -F
=  

0 0

( ) ( ) [ ( ) (0)] [ ( ) (0)]
lim limi s i i s s

l l

y l y l y l y y l y
l l­ ­

- - - -
= = . 

 
A similar argument holds if we let l  approach zero from above. These facts, 
together with the regularity of the auxiliary functions at any iq  where ( , )iW q-×  
and ( , )i iU q-×  admit derivatives, imply that  
 

(0) (0) (0) (0)i s i sD D D Dy y y y- - + +- = - . 

 
Observe now that (0) ( , ) ( , ) ( , )i i i i i i i i iW Uy q q q q q q- - -= - -F . Thus, if ( , )iW q-×  

and ( , )i iU q-×  are differentiable at iq , it follows that iy  is differentiable at 0, 
and hence (0) (0)i iD Dy y- += . Then, from the equation above, sy  is also 
differentiable at 0. Using the definition of sy , we know that the function ( ,C

iV ×
, ( , ))i i iaq q q*

- -  admits the two-sided directional derivative at iq  in the direction 
of ikd RÎ . Thus, Property A is satisfied.                           Q.E.D. 

 
This theorem corresponds to Theorem 1 of Carbajal (2010). Additionally, we can 

provide a sufficient condition for the uniqueness of dynamic Groves mechanisms 
on restricted domains, which corresponds to Corollary 1 of Carbajal (2010). Note 
that the family { ( , , ( , )) : | , }C

i i i i i i i i iV a Rq q q q q*
- - - -× Q ® ÎQ ÎQ  is said to be 

pointwise bounded on iQ  if, for each i iq ÎQ , the set of real numbers { ( ,C
i iV q

,, ( , ))}
i i i ii i ia q qq q q

- -

*
- - ÎQ ÎQ . is bounded. 
 

Corollary 1.  Assume that iQ  is an open, convex bounded subset of ikR  and that 
the domain of player i ’s total valuations { ( , , ( , )) : | ,C

i i i i i i iV a Rq q q q*
- - - -× Q ® ÎQ

}i iq ÎQ  is a collection of pointwise bounded, convex functions on iQ . Then, any 
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dynamic direct mechanism which is outcome efficient and periodic ex-post incentive 
compatible is a dynamic Groves mechanism.  

 
Proof: We omit the proof since it is almost identical to that in Carbajal (2010). 
Q.E.D.  

 
As Holmström (1979) states, it is conceivable that uniqueness would be lost when 

the domain is restricted. Compared to Cavallo’s (2008) result for the unrestricted 
domain, this corollary shows the uniqueness result for a restricted domain.18 
Observe that in many interesting economic applications, including the repeated 
auctions and nonlinear pricing models, the domain of valuations is indeed restricted 
and further satisfies the conditions of Corollary 1.19 We illustrate this point with a 
simple nonlinear pricing example. 

 
Example 1.  There is a single player who is interested in a good that a monopolist 
produces. Since there is only one player, we drop the subscript in this example for 
notational convenience. Let (0,1)Q =  and [0,1]A = . Note that we have a one-
dimensional type space in this example. The (one-period) valuation function is 
given as ( , )v a aq q= , where a  is the probability that the player gets the good. Let 
c  denote the constant marginal cost of producing the good. Thus, an efficient 
decision rule is such that ( ) 1a q* =  when cq ³  and ( ) 0a q* =  otherwise. The 
transition kernel is given as follows: Let 1{ }t

tw w ¥
==  be a sequence of 

independently and identically distributed random variables on ( 1,1)-  and let  
 

1 1

1 1 1

1 1

(1 ) if 0 1;

(1 ) 1 if 1;

(1 ) 1 if 0,

t t t

t t t t

t t t

gq g w q
q gq g w q

gq g w q

+ +

+ + +

+ +

ì + - < <
ï= + - - >í
ï + - + <î

  

 
where g  is a real number in (0, 1).20 We have 0/t tq q g¶ ¶ =  and 0( ,DV q¶ a*

0 0
0( ), ) / ( )t t t

t aq w q d g q¥ *
=¶ = å . Hence, 0 0( , ( ))CV aq q*  is linear in 0q , as well as 

other conditions of Corollary 1 are satisfied.21 
Theorem 2 also immediately implies that the uniqueness result holds when the 

domain of player i ’s total valuations { ( , , ( , )) : | ,C
i i i i i i iV a Rq q q q*

- - - -× Q ® ÎQ
}i iq ÎQ  is a collection of pointwise bounded, continuously differentiable 

____________________ 
18 Cavallo follows the method of proof in Green and Laffont (1977), which rests crucially on the 

assumption of a large domain of valuations to establish the uniqueness. 
19 We refer the reader to page 1115 of Krishna and Maenner (2001) for this observation. 
20 We can assign 1tq +  to any value in (0, 1) for the measure-zero event of 1 0tq + = or 1. 
21 Note that tq ’s are independent across periods when 0g =  and perfectly correlated when 

1g = . It is easy to see that 0 0( , ( ))CV aq q*  is linear in 0q  as well for these cases. 
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functions on an open connected subset iQ  of ikR .  
 
 

IV. Conclusion 
 
With a careful specification of dynamic environments, we have examined 

necessary and sufficient conditions for the uniqueness of dynamic Groves 
mechanisms. We first assumed that the set iQ  of types and the set A  of actions 
are Borel spaces and showed that dynamic Groves mechanisms are outcome 
efficient and periodic ex-post incentive compatible. Next, with the additional 
assumptions that iQ  is an open connected subset of ikR  and the domain iV  of 
player i ’s total valuations consists of ( , , ( , ))C

i i i i iV aq q q q*
- - ’s that are equi-

Lipschitz continuous and regular on iQ , we have provided necessary and sufficient 
conditions for the uniqueness of dynamic Groves mechanisms. This is an extension 
of the results in Carbajal (2010) to the dynamic setting.  

We have obtained the uniqueness result for stationary Markovian environments. 
We have utilized the recursive structure and also employed the results in the 
Markov decision process literature, in particular, for the existence and sufficiency of 
deterministic stationary policies. Observe that, without stationarity, every period is 
different from each other decision-theoretically and we lose the nice recursive 
structure that renders the dynamic problem essentially as a static problem. Hence, 
most proof methods as well as the existing mathematical results, such as sufficiency 
of deterministic policies, in this paper may not be applied. It is an interesting, 
though difficult, future research agenda to extend the uniqueness result to more 
general (i.e., non-stationary non-Markovian) dynamic environments.  
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Appendix  
 

Definition of ex-post incentive compatibility: A mechanism 0
ˆ ˆ{ , }t t

ta z ¥
=  is periodic 

ex-post incentive compatible if 1 1, , , , ( , )t t t t
i ii t h a q q- -

-" " " " " , and t
ir" :  

 
1 1 1 1ˆ ˆ( , ( , , , )) ( , , , )t t t t t t t t t t t

i i i i i i iv a h a z h aq q q q q- - - -
- --  

1 1 1 1 1 1 1 1ˆ ˆˆ( ( , ( )) ( )) ( | , ( , , , ))t t t t t t t t t t t t
i i i i iv a h z h p d a h ad q q q q q+ + + + + + - -

-Q
+ -ò  

2 2 2 2 2 2 2 1 1 1ˆ ˆ( ( , ( )) ( )) ( | , ( ))t t t t t t t t t
i i iv a h z h p d a hd q q q+ + + + + + + + +

Q Q
+ -ò ò  

1 1 1ˆ( | , ( , , , ))t t t t t t t
i ip d a h aq q q q+ - -

-´ +L  
1 1 1 1ˆ ˆ( , ( , , , )) ( , , , )t t t t t t t t t t t

i i i i i i iv a h a r z h a rq q q- - - -
- -³ -  

1 1 1 1 1 1 1 1ˆ ˆˆ( ( , ( )) ( )) ( | , ( , , , ))t t t t t t t t t t t t
i i i i iv a h z h p d a h a rd q q q q+ + + + + + - -

-Q
+ -ò  

2 2 2 2 2 2 2 1 1 1ˆ ˆ( ( , ( )) ( )) ( | , ( ))t t t t t t t t t
i i iv a h z h p d a hd q q q+ + + + + + + + +

Q Q
+ -ò ò  

1 1 1ˆ( | , ( , , , ))t t t t t t t
i ip d a h a rq q q+ - -

-´ +L , 

 
where we define  

 
1 1 1 1 1 1 2 1 1 1 2ˆ ˆ( , , , , ( , , , ), ); ( , ( ), );t t t t t t t t t t t t t t t t

i i i ih h a a h a h h a hq q q q q q+ - - - - + + + + + +
- -= =  

1 1 1 1 1 1 2 1 1 1 2ˆ ˆ( , , , , ( , , , ), ); ( , ( ), )t t t t t t t t t t t t t t t t
i i i ih h a r a h a r h h a hq q q q+ - - - - + + + + + +

- -= = . 

 
Proof of Lemma 1: For any two distinct iq  and ˆ

iq  in iQ , we have  
 

ˆ ˆ( , ) ( , ) ( , , ( , )) ( , , ( , ))C C
i i i i i i i i i i i i i i i iU U U a U aq q q q q q q q q q q q* *

- - - - - -- £ -  
ˆ ˆ( , , ( , )) ( , , ( , )) || ||C C

i i i i i i i i i i i i iV a V a Lq q q q q q q q q q* *
- - - -= - £ -  

 
where the first inequality follows from periodic ex-post incentive compatibility and 
the second inequality follows from equi-Lipschitz continuity. Reversing the roles of 

iq  and ˆ
iq , we have ˆ ˆ| ( , ) ( , )| || ||i i i i i i i i iU U Lq q q q q q- -- £ - . Hence, ( , )i i iU q q-  is 

Lipschitz continuous on iQ . A similar argument holds for ( , )i iW q q- . Being 
Lipschitz functions defined on an open connected set ik

i RQ Í , the functions iU  
and W  are differentiable almost everywhere on iQ .                  Q.E.D. 

 
Proof of Lemma 2: Given iq- , we have  
 

( , ) ( , )i i i iW d Wq l q q q- -+ -  

( , , ( , )) ( , ( , ))C C
i i i i i i i i iV d a V aq l q q q q q q* *

- - - - -³ + +  

( , , ( , )) ( , ( , ))C C
i i i i i i i i iV a V aq q q q q q q* *

- - - - -- -   
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( , , ( , )) ( , , ( , ))C C
i i i i i i i i i iV d a V aq l q q q q q q q* *

- - - -= + -   

 
where the inequality follows from the definition of the total social welfare function 

:W RQ® . Thus, if 0l >  we have  
 

( , , ( , )) ( , , ( , )) ( , ) ( , )C C
i i i i i i i i i i i i i iV d a V a W d Wq l q q q q q q q q l q q q

l l

* *
- - - - - -+ - + -

£ , 

 
whereas if 0l <  we have  

 
( , , ( , )) ( , , ( , )) ( , ) ( , )C C

i i i i i i i i i i i i i iV d a V a W d Wq l q q q q q q q q l q q q
l l

* *
- - - - - -+ - + -

³ . 

 
If ( , )i iW q q-  is regular at iq , we get the desired results as we let 0l ¯  and 

0l ­  respectively.                                             Q.E.D. 
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제약적 정의역에서의 동태적 그로브즈 메카니즘의  

유일성* 

윤 기 호** 

22 

 

본 논문은 가치함수의 정의역이 제약적인 경우 동태적 그로브즈 메카

니즘의 유일성에 관한 필요충분조건을 고찰한다. 본 논문은 우선 각 

기간 배분가치함수의 기대할인합인, 따라서 정태적 가치함수의 동태

적 대응인 총가치함수를 적절하게 정의한 후, 다음으로 정태적 그로브

즈 메카니즘의 결과들을 동태적 상황에 적용하는 방법론을 취하고 있

다. 
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