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Abstract

This paper explores the effect of strategic incentives on the shape of social and

economic networks in the context of information resales. We first determine the

relationship between the network structure and agents’ relative market power

in the resale of information, using the useful concept of simple networks. We

then provide the characterization of efficient and stable network architecture. We

show that a simple network is stable if and only if it consists of one spoke and one

circle of size 5. We also show for general networks that stable networks cannot

contain strong blocks nor line segments of length > 4. We finally show that

stable networks are efficient. We impose no direct costs of maintaining links to

emphasize the strategic aspect of networks. Nevertheless, we find that agents do

not establish links to all other agents in a stable network. JEL Classification:

C72; D00; L00.

Keywords: Stable networks; Efficient networks; Resale of information
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Resale of information and stability of networks

Kiho Yoon

1. Introduction

One of the most distinguishing characteristics of information is non-rivalry. While

most ordinary goods and services can only be consumed by a limited group of people,

information can be transferred to other people without decreasing the consumption of

the original possessor. For example, I can share my information about stock prices or

good restaurants in town with others, and I still possess the information.1 In addition,

information can be reproduced with virtually no cost.

Due to these characteristics, trades in valuable information often entail resales. That

is, once an initial possessor of information sells it to other agents, buyers compete strate-

gically with the seller and other buyers to resell the information. We note that, for many

types of information, there are no enforceable means of prohibiting the resale.2 As specific

examples, we take business or technical information, professional newsletters or advertising

services listing valuable information.

This paper studies the architecture of efficient and stable networks when agents strate-

gically establish links to obtain a better outcome in the resale of information. The analysis

is performed with a two-stage game in which agents first establish links, and then partici-

pate in the resale process where an agent can trade the information with another agent if

and only if the two are linked.

We start with the analysis of the second stage of resales, and determine the rela-

tionship between the network structure and agents’ relative market power in the resale

of information. We consider a stylized resale process when the link pattern as well as

1 Of course, it is a different question whether I want to share the information. In other words, the possessor
of the information can refuse to share it when she wishes to. Therefore, information can be excludable
while it is non-rivalrous.

2 There simply does not exist any legal protection for many types of information. Even for the types of
information that are protected by the intellectual property laws, the enforcement is far from perfect.
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the initial possessor of information is given, and find how the total value of information is

distributed among agents. We characterize the structure of networks for the resale of infor-

mation with the useful concept of a simple network, which is a connected network where

only the initial possessor of information can exert some monopoly power over others.3 We

first determine the distribution of values for simple networks, and then show that every

network can be reduced to a simple network.

The main contribution of this paper is the characterization of efficient and stable

network architecture. To study the first stage of network formation, we impose a symmetry

assumption that (i) every agent has the same valuation for the information, and (ii) each

agent becomes the initial possessor of information with equal probability (or alternatively,

each agent initially possesses a distinct piece of information.) We first determine the

architecture of a simple network that is stable. We prove in Theorem 1 that the only

stable simple network architecture is the one consisting of a circle of size 5 and a spoke.4

We next consider the stability of arbitrary networks. We introduce the concept of a block,

which is a maximal set of agents with the property that there exist at least two internally

disjoint paths from any agent to any other agent. We also define the concept of a strong

block , which is intuitively a block that is robust to link deletions.5 We prove in Theorem 2

that a stable network cannot contain strong blocks nor line segments of length > 4.6 We

finally prove in Theorem 3 that every stable network is efficient.

This paper is a contribution to the fast-growing literature on the formation of net-

works. Papers include Jackson and Wolinsky (1996), Dutta and Mutuswami (1997), Bala

and Goyal (2000), and Kranton and Minehart (2001).7 Jackson (2003) provides a com-

3 See the next section for a precise definition.

4 The architecture is depicted in Figure 2.

5 See Section 3 for precise definitions.

6 A possible architecture is depicted in Figure 5.

7 See also the special issue of Review of Economic Design (Vol. 5, No. 2-3, 2000) on the formation of
groups. This literature is different from the cooperative game-theoretic approach of coalition formation,
as in Myerson (1977) or Slikker (2000), in that the value of a network as well as individuals’ payoffs can
depend on the exact architecture, i.e., on how individuals are connected.
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prehensive survey of this literature. We contribute to the literature by posing a new

environment, namely, the resale of information in networks, to analyze agents’ strategic

incentives to form a network.8 In particular, unlike most other papers in this area, we

impose no direct costs of links to emphasize the strategic aspect of social and economic

networks.

The rest of the paper is organized as follows. In the next section, we determine

the relationship between the network structure and the value distribution. We provide

main results in Section 3, which contains characterizations of efficient and stable network

architecture. Section 4 discusses the robustness of main results and directions for future

research. Most technical proofs are gathered in Appendix A.

2. Network structure and distribution of values

2.1. Resale of information

Suppose that there is a particular piece of information that can be reproduced cost-

lessly from any copies of the original. Let N = {1, . . . , n} be a set of agents, and let vi

for i ∈ N be agent i’s valuation of the information. We assume that vi > 0 for all i ∈ N .

We further assume n ≥ 4 throughout the paper since otherwise the discussion is rather

vacuous.

The information is diffused through a resale process. Assume without loss of generality

that agent 1 is the initial monopolistic possessor of the information. Agent 1 first sells

the information to other agents, and other agents decide whether to purchase it. Once an

agent purchased the information, she can resell it to other non-possessors of information.

Therefore, possessors of information compete to (re)sell the information to non-possessors.

The resale process continues for finite time periods, after which the consumption stage

occurs.

8 Hence, this paper is a network theory of trades in information, as compared to Kranton and Minehart’s
(2001) network theory of trades in ordinary goods. Resale of information without network structure was
studied in several papers including Muto(1986, 1990) and Nakayama and Quintas (1991).
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We impose a network structure on the set of agents in the sense that an agent can

purchase the information only from the possessors she is linked to. Formally, a network

on the set of agents is a n× n symmetric matrix G such that gij = gji = 1 if agent i and

j are linked and gij = gji = 0 otherwise. We let gii = 1 for all i ∈ N as a convention.

Therefore, a network structure is represented by a non-directed graph. For any i ∈ N , call

L(i) = {j ∈ N \{i} : gij = 1} as the set of i’s neighbors. Likewise, for any subset of agents

S ⊆ N , call L(S) =
⋃

i∈S L(i) \ S = {j ∈ N \ S : gij = 1 for some i ∈ S} as the set of S’s

neighbors.9 Therefore, when the set of possessors is S, resales can occur only between S

and L(S).

2.2. Distribution of values

In this subsection, we study how the total value of the information is distributed

among agents. In other words, we determine the final payoff each agent receives from

the resale process. We first characterize the distribution of values for a particular kind of

networks called simple networks, and then generalize to arbitrary networks.

For a given network G and i, j ∈ N , a path q from agent i to agent j is a set of links

from i to j. That is, we say that there exists a path q from agent i to agent j if there exist

distinct agents i1, i2, . . . , im such that gi,i1 = gi1,i2 = · · · = gim,j = 1.10 The length of a

path is the number of its links. As a convention, we treat a link as a path of length 1. We

say that the network is connected if there exists a path between any two agents. We first

define several important sets.

Definition 1. Consider a connected network G.

(i) The set of i’s predecessors in path q = {1, i1, . . . , im, i} from 1 to i is defined as

A(i, q) = {1, i1, i2, . . . , im}.
(ii) The set of i’s critical predecessors is defined as A(i) =

⋂
q∈Q(i) A(i, q), where Q(i) is

9 Note that we slightly abuse the notation here since L(i) is in fact L({i}).
10 Since networks are represented by non-directed graphs, we also have gi1,i = gi2,i1 = · · · = gj,im = 1.

We will present only one of the symmetric relations gij and gji for convenience.
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the set of all paths from 1 to i.

(iii) The set of j’s captive descendants is defined as D(j) = {i ∈ N | j ∈ A(i)}.
(iv) The set of critical agents is defined as C = {j ∈ N | D(j) 6= ∅}. Each agent in C has

some monopoly power over her captive descendants, as we will see below.

We provide examples illustrating these concepts. See also Figure 1.

Example 1. In the complete network where gij = 1 for all i, j in N , we have A(1) = ∅
and A(i) = {1} for all i ∈ N \ {1}, and D(1) = N \ {1} and D(j) = ∅ for j ∈ N \ {1}.
Therefore, C = {1}. In a line network where g1,2 = g2,3 = . . . = gn−1,n = 1 and gij = 0 for

all other (i, j) pairs with i 6= j, we have A(1) = ∅ and A(i) = {1, . . . , i− 1} for i ∈ N \ {1},
and D(j) = {j + 1, . . . , n} for j ∈ N \ {n} and D(n) = ∅. Therefore, C = {1, . . . , n− 1}.

We now introduce the important concept of simple networks. In Proposition 2 below,

we show that every connected network can be reduced to a simple network insofar as we

are concerned with the distribution of values.

Definition 2. A simple network is a connected network where agent 1 is the only critical

agent, i.e., C = {1}.

Given a simple network, partition the set N \{1} by the following equivalence relation:

i ∼ j if and only if there is a path between i and j not involving agent 1. That is,

i ∼ j if and only if there is a set of agents {i1, . . . , im} with 1 /∈ {i1, . . . , im} such that

gi,i1 = gi1,i2 = · · · = gim,j = 1. It is clear that this relation is reflexive, symmetric, and

transitive.11 Therefore, N \ {1} = N1 ∪ . . . ∪ NR where each Nr is a nonempty subset

of agents and Nr ∩ Nr′ = ∅ for all r 6= r′; r, r′ = 1, . . . , R. We can easily see from the

definition of the equivalence relation that there is no link between i ∈ Nr and j ∈ Nr′ for

all i, j in N \ {1} and r 6= r′. We also have the following proposition. (We will denote the

cardinality of a set S by |S| in what follows.)

11 i ∼ i since we let gii = 1 as a convention. Hence, the relation ∼ is reflexive.
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Proposition 1. Each Nr is either (i) a one-agent set, or (ii) a set of more than one agent

such that, in the subnetwork on {1} ∪Nr, each agent has at least two links.

Proof. Consider a set Nr with |Nr| ≥ 2 and pick any agent i in Nr. Agent i ∈ Nr has a

path to another agent j 6= i in Nr not involving agent 1. Therefore, i has a link to another

agent, say k, in Nr. Since i has a path from agent 1 (because the network is connected),

if the link to k is the unique link i has then we must have i ∈ D(k). This, however, is a

contradiction since agent 1 is the only critical agent in a simple network.

We next prove that agent 1 has at least two links in the subnetwork on {1} ∪ Nr.

Suppose agent 1 has only one link to an agent, say i, in Nr. Then, because the network

is connected, i is a critical predecessor for all j ∈ Nr \ {i}. This, however, is again a

contradiction since agent 1 is the only critical agent in a simple network. ♦

Each Nr will be called a petal. A petal of the first type in the proposition (that is, a

petal with |Nr| = 1) will be called a spoke, and a petal of the second type will be called

a nontrivial petal. It is obvious that the only agent in a spoke has a unique path from

agent 1 (in fact, has a link with agent 1), and agents in a nontrivial petal have at least two

internally disjoint paths from agent 1. Note that two paths are said to be internally disjoint

if they do not share a common intermediate agent. That is, two paths q1 = {i, i1, . . . , im, j}
and q2 = {i, j1, . . . , jl, j} from agent i to agent j are internally disjoint if q1 ∩ q2 = {i, j}.

The distribution of values among agents is generally dependent on the nature of trad-

ing institution. For example, if a bargaining institution is employed, then agent 1 may get

only a half of the valuation vi when she sells the information to agent i of a spoke. On the

other hand, if agent 1 can make a take-it-or-leave-it offer to agent i, then she can charge

the maximum price of vi. We may also transform the situation into a graph-restricted TU

(transferable utilities) game and apply various axiomatic solution concepts.

Although it is certainly an important subject to see how the distribution of values

in a given network changes across different trading institutions and/or different solution
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concepts, we do not delve into this subject since it is beyond the scope of this paper.

Instead, we adopt the following specific configuration of value distribution in this paper,

and characterize the efficient and stable network architecture in the next section.

For each r = 1, . . . , R, let πr = max{vi|i ∈ Nr ∩ L(1)}, and let Hr = arg max{vi|i ∈
Nr ∩ L(1)}. That is, an agent in Hr is one of those agents who are agent 1’s neighbors in

Nr and whose valuation for the information is not lower than any other agent in Nr∩L(1),

and πr is the valuation of agents in Hr. For a spoke Nr = {j}, it is obvious that Hr = {j}
and πr = vj . On the other hand, for a nontrivial petal, Hr may contain more than one

agent. In this case, we assume that a particular agent hr is chosen with equal probability

among Hr. Let {hr}r=1,...,R be one such selection. Then, agent i’s final payoff after the

resale process in a simple network G is given as

φi(G) =





v1 +
∑R

r=1 πr if i = 1,
0 if i = hr for r = 1, . . . , R,
vi otherwise.

(∗)

This configuration of value distribution roughly corresponds to the trading institution

where sellers have all the bargaining power, but they compete in a Bertrand fashion in the

resale process. To be more specific, when agent 1 sells the information to a spoke Nr = {j},
she charges vj and extracts all the gains from trade. When agent 1 sells the information

to a nontrivial petal, she first sells it to a linked buyer with the maximum valuation, i.e.,

to hr, at the price of πr. After this initial sale, the information is diffused to other agents

of this nontrivial petal at zero price since agent 1 and agent hr now price-compete to resell

the information.12

We next show that the distribution of values for any connected network can be deter-

mined by transforming the network into a simple network.

12 A specific diffusion game that supports this configuration can be constructed. This construction adapts
Muto’s (1986) information good game, which formalizes the resale process, to arbitrary networks. Details
may be provided upon request.
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Proposition 2. Every connected network can be reduced to a simple network.

Proof. Fix any connected network G. For each j ∈ C = {j ∈ N | D(j) 6= ∅}, define the

subnetwork starting from j, denoted by Gs(j), as the subnetwork on the set {j} ∪D(j).

That is, Gs(j) is the submatrix obtained from the original matrix G by keeping only the

rows and columns corresponding to the set {j} ∪D(j) of agents. We replace Gs(j) by a

representative agent j equipped with an imputed valuation vj in a recursive manner. To

do this, impose a precedence relation ≺ on the set C of critical agents as:

j ≺ i if and only if j ∈ A(i).

Observe that Gs(j) with j 6≺ j′ for all j′ ∈ C is a simple network. Therefore, we can

compute agent j’s payoff in the subnetwork as treating agent j as the initial possessor of

the information. We set vj to be equal to this payoff and replace Gs(j) with a representative

agent j equipped with a valuation vj . Note that we can contract Gs(j) into j without

losing any information about the network structure outside the subnetwork Gs(j) since

there is no link between any agent in D(j) and another agent in N \ ({j} ∪D(j)).13 Do

the process recursively along the precedence relation ≺ for all j ∈ C except agent 1. For

each agent i ∈ N \ ∪j∈C({j} ∪D(j)), assign vi = vi. Then we are given a simple network

with agent 1 being the only critical agent and other agents equipped with valuations vi’s,

which we have just derived. ♦

Note that we determine the distribution of values by recursively applying (∗) along

the precedence relation, starting from the outermost subnetworks which are by construc-

tion simple. Therefore, we can extend the domain of the function φi(·) to all connected

networks.14 Since any network can be decomposed into connected components, we can in

fact determine the distribution of values for an arbitrary network by applying Proposition

13 Suppose there exist i ∈ D(j) and k ∈ N \ ({j} ∪ D(j)) such that gik = 1. Since k /∈ D(j), there is a
path from 1 to k not involving j. Then, there is a path from 1 to i not involving j, contradicting the fact
that i ∈ D(j).

14 Note, however, that the configuration (∗) can only be applied to simple networks. Hence, a given con-
nected network needs to be recursively reduced to a simple network, which is the main point of Proposition
2.
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2 to each connected component. That is, the domain of φi(·) can be extended to arbitrary

networks. In the remainder of this section, we show how the total value of the information

is distributed among agents for some specific networks. Figure 1 depicts the networks.

(a) The complete network: The complete network is a simple network with a unique

nontrivial petal and no spoke. Let j be an agent with vj = max{v2, . . . , vn}. Then, by

the configuration (∗) above, we have φ1(G) = v1 + vj , φj(G) = 0, and φk(G) = vk for all

k 6= 1, j.

(b) A star network: A star network is a network where there is a central agent i ∈ N such

that gij = 1 for all j ∈ N \ {i} and there exists no other link. Suppose that agent 1 is the

central agent. Then, the network is a simple network consisting of only spokes. We thus

have φ1(G) =
∑n

i=1 vi and φj(G) = 0 for all j 6= 1 by the configuration (∗).
(c) A circle network: A circle network is a network where agents are arranged as {i1, . . . , in}
with gi1,i2 = . . . = gin−1,in = gin,i1 = 1 and there exists no other link. Let j be an agent

in L(1) with vj = max{vk|k ∈ L(1)}. Since the circle network is a simple network with a

unique nontrivial petal and no spoke, we have φ1(G) = v1+vj , φj(G) = 0, and φk(G) = vk

for all k 6= 1, j by the configuration (∗).
(d) A line network: A line network is a network where agents are arranged as {i1, . . . , in}
with gi1,i2 = . . . = gin−1,in = 1 and there exists no other link. Suppose that i1 = 1. The

network is not a simple network. Therefore, we can recursively reduce G beginning with

in−1 as in Proposition 2 to conclude that φ1(G) =
∑n

i=1 vi and φj(G) = 0 for all j 6= 1.

[Figure 1 inserted around here]

3. Efficiency and stability of networks

In this section, we analyze the first stage of network formation, where agents strate-

gically form or sever links to enhance their relative market power in the ensuing stage of

resales studied above. We introduce a symmetry assumption.
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Assumption 1. (Symmetry) (i) every agent has the same valuation v for the information,

and (ii) each agent becomes the initial possessor of the information with equal probability,

1/n.

With Assumption 1, agent i’s payoff in the previous section, φi(G), is in fact i’s payoff

in the network G when agent 1 is endowed with the information initially. From now on,

we will denote this payoff by φi
1(G). Generally, agent i’s payoff in the network G when

agent j is the initial possessor is denoted by φi
j(G). Then, agent i’s expected payoff given

the network structure G is

Φi(G) =
φi

1(G) + · · ·+ φi
n(G)

n
.

We note that Assumption 1(ii) can be alternatively formulated as ‘each agent initially

possesses a distinct piece of information whose value is v for all agents.’ In this formulation,

Φi(G) is agent i’s payoff normalized by the size of network, i.e., n. We now state the notions

of efficiency and stability.

Definition 3. A network G is efficient if
∑

i∈N Φi(G) ≥ ∑
i∈N Φi(G′) for all other net-

works G′.

Note that this notion of efficiency is termed as strong efficiency in Jackson and Wolin-

sky (1996), which is stronger than Pareto efficiency. The notion of stability we use is

pairwise stability. As mentioned in Jackson and Wolinsky (1996), pairwise stability is a

relatively weak notion among those which account for network formation. As will be shown

below, however, this weak notion is strong enough in our framework since it essentially

excludes all but one network architecture. In the definition, G + ij denotes the network

where a new link ij is added to the original network G, and G − ij denotes the network

where the existing link ij is deleted from the original network G.

Definition 4. A network G is stable if (i) for all i and j with gij = 1, Φi(G) > Φi(G− ij)

and Φj(G) > Φj(G− ij), and (ii) for all i and j with gij = 0, if Φi(G + ij) > Φi(G) then

Φj(G + ij) ≤ Φj(G).
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Hence, when an agent is indifferent between maintaining a link and not doing so, she

chooses not to maintain. Note that this notion of pairwise stability is slightly different from

that in Jackson and Wolinsky (1996), which postulates that an agent chooses to maintain

a link when she is indifferent.15

Let us introduce at this point several terms and notations used hereafter. Consider a

given network G over the set N = {1, . . . , n} of agents. We first observe that, depending on

the identity of the initial possessor, G may become a simple network or not. For example,

a star network with agent 1 being the center becomes a simple network when agent 1 is

initially endowed with the information, while it is not a simple network when an agent

other than agent 1 is initially endowed with the information. As a convention, we will

continue to call a network G a simple network if G turns out to be a simple network when

agent 1 is initially endowed with the information. Next, we will denote a simple network

as G = [G1, . . . , GR], where Gr is the subnetwork on {1} ∪ Nr. We will say that a petal

Nr constitutes a certain type of network if Gr is that type of network. For example, we

will say that Nr constitutes a circle network if Gr is a circle network. Needless to say, G

cannot be represented in this way when agent i 6= 1 is the initial possessor. Finally, we

will use nr in place of |Nr| to denote the cardinality of Nr.

In the following, we first characterize the stability of simple networks, and then discuss

efficiency and stability of general networks. We remind the reader that we have assumed

n ≥ 4. (When n = 2 or n = 3, it is trivial to see that a line network connecting every

agent is both efficient and stable.)

3.1. Stability of simple networks

We now characterize the structure of stable simple networks (that is, simple networks

that are stable) in Propositions 3-8 below, which culminates in Theorem 1. All the proofs

of propositions, as well as additional lemmas, can be found in Appendix A.

15 The notion of stability we employ can be interpreted in such a way that it implicitly assumes an
infinitesimal cost of maintaining a link. See Section 4 for a detailed discussion.
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Proposition 3. If a simple network G = [G1, . . . , GR] is stable, then each of its nontrivial

petals constitutes a circle network.

Proposition 3 implies in particular that the complete network is not stable. The

intuition for this proposition is as follows. When an agent establishes an additional link,

her probability of being linked to the initial owner of information increases, and so the

probability of getting a zero payoff. Therefore, agents try to maintain as few links as

possible.

Proposition 4. If a simple network G = [G1, . . . , GR] is stable, then it contains more

than one petal.

Note that Proposition 4 in fact establishes that circle networks are not stable.

Proposition 5. If a simple network G = [G1, . . . , GR] is stable, then each of its nontrivial

petals has at least three agents. Moreover, if R = 2 then each of its nontrivial petals has

at least four agents.

Proposition 6. If a simple network G = [G1, . . . , GR] is stable, then it contains exactly

one spoke.

Proposition 6 implies that star networks are not stable. The intuition for this propo-

sition is as follows. First, agents do not want to be spokes since this would leave them

with zero payoff when agent 1 is the initial possessor. Hence, if the network contains two

or more spokes, then agents in spokes have an incentive to establish links. Second, if the

network does not contain a spoke (but two or more nontrivial petals by Proposition 4),

then agent 1 has an incentive to disconnect links to increase her monopoly power over

petals.

Proposition 7. If a simple network G = [G1, . . . , GR] is stable, then it contains exactly

one nontrivial petal.
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We have established the fact that if a simple network is stable, then it contains exactly

one spoke and exactly one nontrivial petal which constitutes a circle network. Our final

characterization for a stable simple network is:

Proposition 8. If a simple network is stable, then its nontrivial petal has exactly four

agents.

We will call the circle network made up of the nontrivial petal and agent 1 as the circle

part of the simple network G. From Proposition 8, we know that the circle is of size 5. That

is, it has 5 agents - agents in the nontrivial petal and agent 1. We have established necessary

conditions for a stable simple network through Propositions 3-8. These conditions are in

fact sufficient. We thus have the following complete characterization of a stable simple

network. See also Figure 2 for a graphical representation.

Theorem 1. A simple network G is stable if and only if it contains exactly one spoke and

exactly one nontrivial petal which constitutes a circle network and has exactly 4 agents. In

other words, a stable simple network consists of one spoke and one circle of size 5.

Proof. We leave it to the reader to show the sufficiency part since it is a straightforward,

albeit rather lengthy, exercise. ♦

We want to emphasize that simple networks cover many interesting networks. The

complete network, circles, and stars are simple networks. All the networks that have more

links than a circle are also simple. One can also add additional spokes to a simple network.

Simple networks clearly cover more than just these networks. Moreover, since agents can

be renamed, it is sufficient to find the network to be simple with any agent being the initial

possessor. Theorem 1 establishes that all the simple networks are not stable except for

one architecture.

[Figure 2 inserted around here]
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3.2. Efficiency and stability of general networks

We now turn to the discussion of general networks.16 We define the concept of blocks

for a given network G.

Definition 5. A block is a subset M of agents such that (i) for any i, j ∈ M , there exist

at least two internally disjoint paths from i to j,17 and (ii) there does not exist a superset

of M which satisfies property (i), i.e., the set M is maximal with respect to property (i).18

Note that a block contains at least 3 agents. It is a well-known fact in graph theory

that two blocks in a network share at most one agent. In addition, an agent in a network

who does not belong to a block does not belong to any cycle. That is, she is a cut-vertex

in that the network has more components without her. Therefore, an arbitrary network is

decomposed into blocks and isolated agents who do not belong to any cycle.

We first discuss the stable architecture of blocks. Given an arbitrary network G,

consider the subnetwork GM on a block M . One of the most important features of blocks

for our purpose is that the only critical agent in this subnetwork is the initial possessor,

no matter who the initial possessor is in M . Suppose i ∈ M is the initial possessor. By

our configuration (∗) in Section 2, the information good will be diffused to M at zero price

except for one of i’s neighbors L(i). On the other hand, agent i will sell the good to a

neighbor who has the highest (imputed) valuation. Recall from the proof of Proposition

2 that the imputed valuations of agents in M of the network G, if G is not simple, can

be derived by recursively reducing the connected component containing M to a simple

network with agent i being the initial possessor.

16 I thank an anonymous referee for correcting severe errors in this subsection.

17 Recall from the discussion after Proposition 1 that two paths are internally disjoint if they do not share
a common intermediate agent.

18 We want to note that this definition of blocks is slightly different from the conventional one. In graph
theory, a block is defined to be a subnetwork that satisfies (i) and (ii). We define a block as a set of nodes
instead. This is useful for our purpose since nodes are the main units of analysis in our study of strategic
stability.
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Does agent i, the initial possessor in M , has an incentive to disconnect a link to M?

To answer this question, we classify blocks as follows.

Definition 6. Consider a block M and the subnetwork GM on it.

(i) M is a weak block if M ceases to be a block whenever any one link in GM is deleted.

(ii) M is a semi-strong block if there exists a link ik in GM such that M continues to be

a block in the new network GM − ik.

(iii) M is a strong block if M continues to be a block in the new network GM − ik for any

link ik in GM .

A block that constitutes a circle network, which is a block with the minimum number

of links, is a weak block. There are other weak blocks, as the network in Figure 3(a) shows.

The network in (b) shows a semi-strong but not a strong block, while the one in (c) shows

a strong block. Note that the set N of agents in a complete network with n ≥ 4 is a strong

block. Note also that M is a strong block if and only if there exist at least three internally

disjoint paths from any agent to any other agent.

[Figure 3 inserted around here]

The answer to the stability of blocks with respect to link deletion depends on whether

M continues to be a block in the new network. Let h be an agent in M ∩ L(i) with the

lowest (imputed) valuation. That is, h is an agent in the set

arg min{vj | j ∈ M ∩ L(i)}.
Let G′ = G − ih, and assume that M remains as a block in G′. Then, we have φi

i(G) =

φi
i(G

′). In addition, it is clear that φi
j(G) = φi

j(G
′) for all j /∈ M . It is also clear that

φi
j(G) = φi

j(G
′) for all j ∈ M \ {i, h} and φi

h(G) ≤ φi
h(G′). Therefore, since Φi(G) ≤

Φi(G′), agent i has an incentive to disconnect one of its links in M by Definition 4(i)

of stability. The reason is that her probability of being linked to the initial owner of

information decreases, and so the probability of getting a zero payoff. This implies that

strong blocks cannot be stable.
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Matters become complicated when M is not a strong block. Consider the following

figure.

[Figure 4 inserted around here]

The set M = {1, 2, 3, 4} is a semi-strong block in the network G shown in Figure 4(a).

Suppose agent 1 is the initial possessor of the information. When she sells the good to

agent 2 or 4, the price she can charge is v. On the other hand, she can charge 2v to agent

3. Hence, agent 1 sells the good to agent 3 among M , and h as defined above is either 2 or

4. Let h = 2, and consider the situation when 1 disconnects the link 12. In the resulting

network G′ = G−12, the set M = {1, 2, 3, 4} ceases to be a block. In this case, we see that

φ1
1(G) = 4 < 5 = φ1

1(G
′) and that φ1

2(G) = 1 > 0 = φ1
2(G

′). Observe that things get more

involved in networks such as the one in Figure 4(b). These simple examples demonstrate

that it seems almost impossible to completely characterize the stable network architecture.

To summarize the discussion, we have the following proposition.

Proposition 9. If a network G is stable, then none of its blocks can be a strong block.

Recall that the circle is the only stable block architecture in simple networks (Proposi-

tion 3). By contrast, we have a weaker characterization for general networks. The reason is

that we cannot delete an arbitrary link of an agent in general networks since her neighbors

may have different imputed valuations.

We now turn to the discussion of isolated agents. Note that the agents not in a block

form the tree part of the network, and the tree part is composed of line segments. We

ask the length of a line segment in a stable network. There are two types of line segments

to consider, closed line segments and open line segments. A closed line segment is a line

subnetwork both of whose ends are connected to another part of the network, while an

open line segment is a line subnetwork only one of whose ends is connected to another

part of the network. To answer the question, consider a line network of m agents such

that g1,2 = g2,3 = · · · = gm−1,m = 1 and let agents’ valuations for the information to
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be v2 = v3 = · · · = vm−1 = v and v1, vm > v. Observe that a closed line segment is

represented by this type of line network with v1 ≥ 2v and vm ≥ 2v, and an open line

segment is represented by this type of line network with v1 ≥ 2v and vm = v. Regardless

of whether a line segment is closed or open, we have:

Proposition 10. If a network G is stable, then all of its line segments are of length ≤ 4.

It is an easy exercise to show that an open line segment of length ≤ 4 is stable (in

itself). For a closed line segment of size ≤ 4, we cannot determine the stability definitely.

Example 2. Consider a closed line segment with length 3. In this network G, we have

Φi(G) = 1
3 [v1 + v + v3]. Now, if agents 1 and 3 establish a link, then in the new network

G′ = G + 13, we have

Φ1(G′) = 1
3 [v1 + v3 + v1] and Φ3(G′) = 1

3 [v1 + v3] if v1 < v3,

Φ1(G′) = 1
3 [v1 + v3] and Φ3(G′) = 1

3 [v1 + v3 + v3] if v1 > v3, and

Φ1(G′) = 1
3 [v1 + v3 + v1/2] and Φ3(G′) = 1

3 [v1 + v3 + v1/2] if v1 = v3.

Therefore, if v1 = v3 > 2v, then 1 and 3 have an incentive to establish a link, rendering

the closed line segment unstable. In all other cases, the line segment is stable. For a closed

line segment with length 4, we can find more cases of instability.

Summarizing the discussion, we have the following characterization of stable networks.

Theorem 2. If a network is stable, then it cannot contain strong blocks nor line segments

of length > 4.

We show a typical shape of stable networks in Figure 5. To complete the picture,

we now prove the following proposition for the stand-alone line networks. Note that line

networks are not simple networks. This proposition implies in particular that, when the

number of agents is less than or equal to 5, line networks are the only stable network

architecture.

[Figure 5 inserted around here]
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Proposition 11. Line networks are stable if and only if its length is less than or equal to

5.

Our final result is on the efficiency of networks.

Theorem 3. Stable networks are efficient.

Proof. We first observe that a network is efficient if and only if it is connected since the

maximum total value of the information for the set N = {1, 2, . . . , n} of agents, which is

equal to nv, will be distributed in some way among n agents if and only if the network is

connected. Therefore, all we need to show is that stable networks are connected. Suppose

to the effect of contradiction that there exist at least two connected components in a stable

network G. Since G is stable, each of its components is either a line network of less than

or equal to 5 players or a network made up of blocks and line segments. It is not hard to

see that an agent at the end of a line segment has an incentive to establish a link with

another agent in other components. It is also easy to see that an agent at the juncture (of

a block and a line segment or of blocks) of a network made up of blocks and line segments

has an incentive to establish a link with another agent in other components.19 Since there

are at least two such agents whenever a network is not connected, we proved the claim.

♦

Note: The converse of the theorem is obviously not true.

4. Discussion

As mentioned in the Introduction, we have not imposed direct costs of maintaining a

link to concentrate on agents’ strategic incentives. We note that, even when agents incur

strictly positive (direct) costs of links, the analysis in the previous section is not altered

as long as the costs are relatively low compared to the valuation v. The reason is that,

even without direct costs, agents minimize the number of links due to the pricing of the

19 Note that a stable network cannot contain a stand-alone circle, as shown in Proposition 4.
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information. To put it differently, the value of every link in a stable network is strictly

positive to the agents who maintain it.20 Therefore, the assumption of no direct costs of

links is not essential to the analysis.

We have postulated in the definition of stability that when an agent is indifferent be-

tween maintaining a link and not doing so, she chooses not to maintain. This is a natural

assumption; and especially so when there exist strictly positive costs of links.21 Neverthe-

less, we want to briefly discuss the alternative case when an agent chooses to maintain a

link when she is indifferent.22 It is easy to see that a stable network is overconnected in

this case compared to the previous analysis. For example, in a network shown in Figure 2,

agents 2 and 5 need to maintain an additional link for this to be stable. In addition, line

networks for n ≤ 5 cease to be stable but instead circle networks are stable.23 We note,

however, that the network will not be overly connected. This is easily seen from the above

examples. More generally, we observe that the endogenous cost of a link to agent i when

she establishes a new link with agent j is roughly 1
n · v

|L(j)| for most j ∈ N . Therefore,

although agents maintain more links in this alternative case, there exist obvious limits due

to the endogenous costs of pricing.

We have discovered the efficient and stable network architecture for the resale of infor-

mation. We have completely characterized the architecture of a stable simple network: It

consists of a spoke and a circle of 5 agents. More generally, stable networks cannot contain

strong blocks nor line segments of length > 4. We also found that stable networks are

efficient. These strong results are obtained under the configuration (∗) of value distribu-

tion in Section 2. Recall that the configuration (∗) corresponds to the trading institution

20 We leave it to the reader to confirm this argument since it is a straightforward exercise to determine the
value of links in any given network.

21 If we implicitly assume small costs, however, then the efficiency result of Theorem 3 should be reinter-
preted as an approximate efficiency result, in the sense that stable networks generate a value arbitrarily
close to the efficient value as we choose these costs infinitesimally small.

22 Note that this is the notion of pairwise stability in Jackson and Wolinsky (1996).

23 This change in the notion of pairwise stability affects the analysis only via the first part of Definition 4.
It has a bite only in five specific lines in the proofs of Propositions 3, 4, 5, 8, and 9. We have indicated
them in the proofs by explicitly referring Definition 4(i).
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where sellers have all the bargaining power, but they compete in a Bertrand fashion in

the resale process. It certainly is worthwhile to see whether the current architecture of

stable networks will survive under different configurations, i.e., under different trading in-

stitutions. We conjecture that, although the exact shape may be altered, the basic feature

of stable networks that they do not have strong blocks of agents will continue to hold for

most reasonable trading institutions.24 Other possible generalizations include asymmetry

of agents’ valuations as well as asymmetry of agents themselves such that only a subset of

agents may ever become initial possessors of the information.
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Appendix A

We start by presenting simple observations in the following lemma. We do not provide

the proofs since they are straightforward.

Lemma 1. Consider a simple network G = [G1, . . . , GR]. We have

(i) φ1
1(G) = (R + 1)v.

(ii) For i ∈ Nr, we have φi
i(G) = φ1

1(G) if i ∈ L(1), and φi
i(G) = 2v otherwise.

(iii) For i ∈ Nr, we have

φi
1(G) =

{
(1− 1/|Nr ∩ L(1)|)v if i ∈ L(1), and
v otherwise.

(iv) For i ∈ Nr and j /∈ Nr, we have φi
j(G) = φi

1(G).

(v) When R > 1, we have φ1
j (G) = 0 for all j ∈ L(1) and φ1

j (G) = Rv for all j /∈ L(1).

(vi) When R > 1, we have φi
j(G) = v for all i, j ∈ Nr with i 6= j ∈ L(1).

24 For a very brief example, consider an alternative configuration for four agents such that the initial
possessor receives a fraction α of total value, the first purchaser receives a fraction β of total value, and
each of the remaining agents receives a fraction of γ of total value. (So, we have α + β + 2γ = 1.) We
can easily show that the complete network is not stable as long as β ≤ γ: Agent 1 has an incentive to
disconnect the link 12 since that will result in Φ1 = v + v(γ − β)/3, while her payoff in the complete
network is v. Hence, stable networks are incomplete. It is also obvious that stable networks are connected
and so efficient.
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Note: We have φi
1(G) = (1− 1/|Nr ∩ L(1)|)v if i ∈ L(1) in case (iii) since the information

will be sold to one of the agents in Nr ∩L(1) with equal probability, given that they have

the same valuation.

An example would be helpful in understanding these observations.

Example 3. Consider the simple network shown in Figure 2. Then,

(i) φ1
1(G) = 3v.

(ii) φ2
2(G) = φ5

5(G) = φ6
6(G) = 3v, while φ3

3(G) = φ4
4(G) = 2v.

(iii) φ2
1(G) = φ5

1(G) = v/2, φ3
1(G) = φ4

1(G) = v, and φ6
1(G) = 0.

(iv) φi
6(G) = φi

1(G) for i = 2, 3, 4, 5 and φ6
j (G) = φ6

1(G) = 0 for j = 2, 3, 4, 5.

(v) φ1
2(G) = φ1

5(G) = φ1
6(G) = 0 and φ1

3(G) = φ1
4(G) = 2v.

(vi) φ3
2(G) = φ3

5(G) = φ4
2(G) = φ4

5(G) = v.

We next have

Lemma 2. (Decomposition Lemma) Consider a simple network G = [G1, . . . , GR] and

suppose the subnetwork Gr′ changes to G′r′ . If G′ = [G1, . . . , Gr′−1, G
′
r′ , Gr′+1, . . . , GR] is

a simple network, then Φi(G) = Φi(G′) for all i ∈ Nr, r 6= r′.

Proof. We first note that φ1
1(G) = φ1

1(G
′) by Lemma 1(i). For i ∈ Nr with r 6= r′, we

observe that φi
1(G) = φi

1(G
′) and φi

i(G) = φi
i(G

′) by Lemma 1(ii)-(iii). It is also obvious

that φi
j(G) = φi

j(G
′) for all j ∈ Nr. Since Φi(G) = 1

n

∑
j∈Nr

φi
j(G) + 1

n

∑
j /∈Nr

φi
j(G) =

1
n

∑
j∈Nr

φi
j(G) + n−nr

n φi
1(G) by Lemma 1(iv), we have Φi(G) = Φi(G′) for all i ∈ Nr,

r 6= r′. ♦

Lemma 2 shows that an agent’s payoff is not affected by a change in network structure

occurring outside of her own petal. This lemma, therefore, implies that agents need not

know the behavior outside their own petals. This significantly reduces agents’ observational

burden. In other words, it is sufficient for each agent to observe only the local behavior in

her own petal.
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Proof of Proposition 3. Consider a nontrivial petal Nr. We first show that {1} ∪Nr

is a block, whose concept is introduced in Definition 5 of the text.

Lemma 3. If Nr is a nontrivial petal in a simple network, then {1} ∪Nr is a block.

Proof. We will show that, for any i, j ∈ {1} ∪Nr, there is a cycle through both agents.

Case 1: i = 1 or j = 1.

Without loss of generality, assume that i = 1. Since agent 1 is the only critical agent,

there exist two internally disjoint paths from 1 to j. We thus get a cycle concatenating

these two paths.

Case 2: i 6= 1 and j 6= 1.

By definition of Nr, there is a path from i to j not involving agent 1. Moreover, since

1 is the only critical agent, there is a path from 1 to i not involving j, and a path from 1

to j not involving i. We thus get a cycle by concatenating these paths.

It is obvious that {1} ∪Nr is maximal with respect to this property. Hence, {1} ∪Nr

is a block. ♦

We now establish an important fact for weak blocks, whose concept is introduced in

Definition 6 of the text. Consider a weak block M , and assume that the (sub)network GM

defined on it is not a circle. Then, there exists an agent i in M with at least 3 links in

GM . Since M is a weak block, it ceases to be a block in the network GM − ik for any

k ∈ M ∩ L(i). On the other hand, since M was originally a block and thus there exist at

least two internally disjoint paths between i and k in GM , agent k is connected to i even

in GM − ik. In fact, by the ear decomposition theorem, k has a path, say P , to a cycle,

say C, which contains agent i and two of i’s links.25 We claim that the terminus of P , say

25 The ear decomposition theorem, due originally to Whitney, is presented in most graph theory textbook.
See, for example, West (2001). An ear of a graph G is a path in G that is contained in a cycle and is
maximal with respect to internal nodes having degree 2. An ear decomposition of G is a decomposition
P0, . . . , Pk such that P0 is a cycle and Pi for i ≥ 1 is an ear of P0 ∪ · · · ∪ Pi. The ear decomposition
theorem states that a graph has at least two internally disjoint paths for any pair of nodes if and only
if it has an ear decomposition. Furthermore, every cycle in such a graph is the initial cycle in some ear
decomposition.
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agent l, that meets the cycle C is not a neighbor of i, i.e., l /∈ L(i).

Suppose l ∈ L(i). Then, M remains as a block in the network GM − il, contradicting

the fact that M is a weak block. Observe that M remains as a block in GM − il since, in

the original network GM , the path P + ik was an ear of C in a ear decomposition, and

hence the concatenation of P + ik with C − il is now becomes the initial cycle in an ear

decomposition of GM − il. To summarize the discussion, we have the following lemma.

Lemma 4. Let M be a weak block, and assume that the subnetwork GM on this block is

not a circle. For any agent i ∈ M with at least 3 links and for any k ∈ M ∩ L(i), the

terminus of the path from k to a cycle containing agent i and two of its links is not a

neighbor of i.

We are ready to prove Proposition 3. Suppose that a nontrivial petal Nr does not

constitute a circle network. We will first give a proof for a nontrivial petal Nr such that

{1}∪Nr is not a weak block. Then, there exists a link ik in Gr (that is, there exist agents

i and k in {1} ∪Nr with gik = 1) such that G′r = Gr − ik is a nontrivial petal and hence

G′ = [G1, . . . , Gr−1, G
′
r, Gr+1, . . . , GR] remains a simple network.

Case 1: i = 1 or k = 1.

Without loss of generality, assume that i = 1. We have φ1
1(G) = φ1

1(G
′) by Lemma

1(i) and, in addition, φ1
j (G) = φ1

j (G
′) for j /∈ Nr obviously. Therefore,

∑
j /∈Nr

φ1
j (G) =

∑
j /∈Nr

φ1
j (G

′). Now, for j ∈ Nr, we consider two subcases.

Subcase 1.1: When R = 1. In this case, φ1
j (G) for j ∈ Nr is equal to (1 − 1/|L(j)|)v if

j ∈ L(1) and is equal to v otherwise. Therefore,
∑

j∈Nr
φ1

j (G) = nrv−
∑

j∈Nr∩L(1) v/|L(j)|.
On the other hand,

∑
j∈Nr

φ1
j (G

′) = nrv −
∑

j∈Nr∩L(1) v/|L(j)| + v/|L(k)|. Therefore,

Φ1(G) < Φ1(G′) and agent 1 has an incentive to disconnect the link.

Subcase 1.2: When R > 1. In this case, φ1
j (G) for j ∈ Nr is equal to 0 if j ∈ L(1) and

is equal to Rv otherwise. Therefore,
∑

j∈Nr
φ1

j (G) = (nr − |Nr ∩ L(1)|)Rv. On the other

hand,
∑

j∈Nr
φ1

j (G
′) = (nr − |Nr ∩ L(1)|)Rv + Rv. Therefore, Φ1(G) < Φ1(G′) and agent

1 has an incentive to disconnect the link.
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Case 2: i 6= 1 and k 6= 1.

We will show that agent i has an incentive to disconnect the link. First observe that

g1i = 1 if and only g′1i = 1. Therefore, we have φi
i(G) = φi

i(G
′) by Lemma 1(i)-(ii). We

also have φi
j(G) = φi

j(G
′) for j /∈ Nr by Lemma 1(iii)-(iv). Therefore,

∑
j /∈Nr\{i} φi

j(G) =
∑

j /∈Nr\{i} φi
j(G

′). Now, for j ∈ Nr \ {i}, we consider two subcases.

Subcase 2.1: When R = 1. In this case, φi
j(G) for j ∈ Nr \{i} is equal to (1−1/|L(j)|)v if

j ∈ L(i) and is equal to v otherwise. Therefore,
∑

j∈Nr\{i} φi
j(G) = (nr−1)v−∑

j∈Nr∩L(i)

v/|L(j)|. On the other hand,
∑

j∈Nr\{i} φi
j(G

′) = (nr − 1)v − ∑
j∈Nr∩L(i) v/|L(j)| +

v/|L(k)|. Therefore, Φi(G) < Φi(G′) and agent i has an incentive to disconnect the link.

Subcase 2.2: When R > 1. In this case, φi
j(G) for j ∈ Nr \ {i} is equal to (1− 1/|L(j)|)v

if j ∈ L(i) \ L(1) and is equal to v otherwise. Therefore,
∑

j∈Nr\{i} φi
j(G) = (nr − 1)v −

∑
j∈L(i)\L(1) v/|L(j)|. If k ∈ L(1), then

∑
j∈Nr\{i} φi

j(G
′) =

∑
j∈Nr\{i} φi

j(G) and we have

Φi(G) = Φi(G′). If k /∈ L(1), then
∑

j∈Nr\{i} φi
j(G

′) =
∑

j∈Nr\{i} φi
j(G) + v/|L(k)| and

we have Φi(G) < Φi(G′). Therefore, by Definition 4(i) of stability, agent i has an incentive

to disconnect the link.

This concludes the proof for a nontrivial petal Nr such that {1} ∪ Nr is not a weak

block. Now we turn to a nontrivial petal Nr such that {1} ∪Nr is a weak block. Consider

an agent i ∈ {1} ∪ Nr with at least 3 links in Gr, and let G′ be the network when i

disconnects one of her links, say link ik.

Case 1: i = 1.

We have φ1
1(G) = φ1

1(G
′) by Lemma 4 and, in addition, φ1

j (G) = φ1
j (G

′) for j /∈ Nr

obviously. Therefore,
∑

j /∈Nr
φ1

j (G) =
∑

j /∈Nr
φ1

j (G
′). Now, for j ∈ Nr, we consider two

subcases.

Subcase 1.1: When R = 1. In this case, φ1
j (G) for j ∈ Nr is equal to (1 − 1/|L(j)|)v if

j ∈ L(1) and is equal to v otherwise. Therefore,
∑

j∈Nr
φ1

j (G) = nrv−
∑

j∈Nr∩L(1) v/|L(j)|.
On the other hand,

∑
j∈Nr

φ1
j (G

′) = nrv −
∑

j∈Nr∩L(1) v/|L(j)| + v/|L(k)|. Therefore,

Φ1(G) < Φ1(G′) and agent 1 has an incentive to disconnect the link.
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Subcase 1.2: When R > 1. In this case, φ1
j (G) for j ∈ Nr is equal to 0 if j ∈ L(1) and

is equal to Rv otherwise. Therefore,
∑

j∈Nr
φ1

j (G) = (nr − |Nr ∩ L(1)|)Rv. On the other

hand,
∑

j∈Nr
φ1

j (G
′) = (nr − |Nr ∩ L(1)|)Rv + Rv. Therefore, Φ1(G) < Φ1(G′) and agent

1 has an incentive to disconnect the link.

Case 2: i 6= 1.

We will show that agent i has an incentive to disconnect the link ik, where we can

safely assume that k 6= 1. First observe that g1i = 1 if and only g′1i = 1. Therefore, we

have φi
i(G) = φi

i(G
′) by Lemma 4. We also have φi

j(G) = φi
j(G

′) for j /∈ Nr. Therefore,
∑

j /∈Nr\{i} φi
j(G) =

∑
j /∈Nr\{i} φi

j(G
′). Now, for j ∈ Nr \ {i}, we consider two subcases.

Subcase 2.1: When R = 1. In this case, φi
j(G) for j ∈ Nr \{i} is equal to (1−1/|L(j)|)v if

j ∈ L(i) and is equal to v otherwise. Therefore,
∑

j∈Nr\{i} φi
j(G) = (nr−1)v−∑

j∈Nr∩L(i)

v/|L(j)|. On the other hand,
∑

j∈Nr\{i} φi
j(G

′) = (nr − 1)v − ∑
j∈Nr∩L(i) v/|L(j)| +

v/|L(k)|. Therefore, Φi(G) < Φi(G′) and agent i has an incentive to disconnect the link.

Subcase 2.2: When R > 1. In this case, φi
j(G) for j ∈ Nr \ {i} is equal to (1− 1/|L(j)|)v

if j ∈ L(i) \ L(1) and is equal to v otherwise. Therefore,
∑

j∈Nr\{i} φi
j(G) = (nr − 1)v −

∑
j∈L(i)\L(1) v/|L(j)|. If k ∈ L(1), then

∑
j∈Nr\{i} φi

j(G
′) =

∑
j∈Nr\{i} φi

j(G) and we have

Φi(G) = Φi(G′). If k /∈ L(1), then
∑

j∈Nr\{i} φi
j(G

′) =
∑

j∈Nr\{i} φi
j(G) + v/|L(k)| and

we have Φi(G) < Φi(G′). Therefore, by Definition 4(i) of stability, agent i has an incentive

to disconnect the link. This concludes the proof of Proposition 3. ♦

Proof of Proposition 4. Suppose that G contains only one petal. By Proposition 3,

G must be a circle network.26 It is easy to see that Φi(G) = v for all i ∈ N . If agent i

disconnects a link with another agent, then the network becomes a line network G′. It is

also easy to see that Φi(G′) = v for all i ∈ N . Therefore, i has an incentive to disconnect

a link by Definition 4(i) of stability. ♦

26 Recall that we assume n ≥ 4.
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Proof of Proposition 5. By Proposition 4, G contains at least two petals, that

is, R ≥ 2. Now consider a nontrivial petal Nr and let G′ = G − 1i be the network

where agent 1 disconnect a link in Nr, say 1i. We observe that, since every nontrivial

petal constitutes a circle network by Proposition 3, G′r = Gr − 1i is a line network.

Then, we have Φ1(G) = 1
n [(R + 1)v + (nr − 2)Rv +

∑
j /∈{1}∪Nr

φ1
j (G)] and Φ1(G′) =

1
n [Rv + nrv +

∑
j /∈{1}∪Nr

φ1
j (G

′)]. Since Lemma 1(v) implies that φ1
j (G

′) ≥ φ1
j (G) for all

j /∈ {1} ∪Nr, we have Φ1(G′)− Φ1(G) ≥ 1
n [(nr − 1)v − (nr − 2)Rv]. When (i) nr = 2 or

(ii) R = 2 and nr = 3, agent 1 has an incentive to disconnect since Φ1(G′) − Φ1(G) ≥ 0.

♦

Proof of Proposition 6. We first show that if G is stable then it contains at least one

spoke. Suppose to the contrary that G does not contain a spoke. Then G contains two

or more nontrivial petals each of which constitutes a circle network by Propositions 3 and

4. Now consider a nontrivial petal Nr and let G′ = G − 1i is the network where agent

1 disconnect a link in Gr, say 1i. Observe that, for j /∈ {1} ∪ Nr, Lemma 1(v) implies

that φ1
j (G) = φ1

j (G
′) = 0 if j ∈ L(1); and φ1

j (G) = Rv and φ1
j (G

′) = (R − 1)v + nrv if

j /∈ L(1). Let x be the number of agents who do not belong to {1} ∪ Nr and who are

not linked to agent 1. Then, the preceding observation together with the derivation in the

proof of Proposition 5 implies that Φ1(G) = 1
n [(R+1)v +(nr−2)Rv +xRv] and Φ1(G′) =

1
n [(R+nr)v +x(R+nr−1)v]. Hence, Φ1(G′)−Φ1(G) = 1

n [(x+1)(nr−1)v− (nr−2)Rv].

Since each nontrivial petal has at least 3 agents by Proposition 5 and there exist only

nontrivial petals by supposition, we have x ≥ R−1, implying that Φ1(G′)−Φ1(G) ≥ Rv/n.

Therefore, agent 1 has an incentive to disconnect the link 1i.

We next show that if G is stable then it cannot contain more than one spoke. Suppose

to the contrary that G contains two spokes Nr = {i} and Nr′ = {k}. It is easy to see

that Φi(G) = (R + 1)v/n since φi
i(G) = (R + 1)v by Lemma 1(i)-(ii) and φi

j(G) = 0 for

all j 6= i by Lemma 1(iii)-(iv). On the other hand, in the new network G′ = G + ik where

agents i and k establish a link, we have φi
i(G

′) = Rv, φi
k(G′) = v and φi

j(G
′) = v/2 for all
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j 6= i, k.27 Therefore, Φi(G′) = 1
n [(R + 1)v + (n − 2)v/2] > Φi(G). Since agent k faces a

symmetric situation, we conclude that agents i and k have an incentive to establish a link.

♦

Proof of Proposition 7. Proposition 6 says that G contains exactly one spoke, say {i}.
Proposition 4 then implies that G must contain at least one nontrivial petal. Now suppose

that G contains more than one nontrivial petal, say Nr and Nr′ . Proposition 5 implies that

nr ≥ 3 and nr′ ≥ 3. Consider the new network G′ = G+ik where agent k is an agent in Nr

who has a link with agent 1. We note that Nr constitutes a circle network by Proposition

3 and the merged petal {i} ∪Nr is a nontrivial petal. It is easy to see that φi
i(G

′) = Rv

and φi
j(G

′) = v for all j ∈ Nr. Therefore, Φi(G′) ≥ (R + 3)v/n > (R + 1)v/n = Φi(G).

We now turn to agent k’s incentive. In the original network G, we have φk
k(G) =

(R + 1)v and φk
j (G) = v/2 for all j /∈ Nr by Lemma 1. In addition,

∑
j∈Nr\{k} φk

j (G) is

equal to (nr − 1)v− v/2. Therefore, Φk(G) = 1
n [(R + 1)v + (n−nr)v/2 + (nr − 1)v− v/2].

In the new network G′ = G + ik, we have φk
k(G′) = Rv, φk

i (G′) = v and φk
j (G′) = 2v/3

for all j /∈ {i} ∪ Nr. It is also easy to see that
∑

j∈Nr\{k} φk
j (G′) =

∑
j∈Nr\{k} φk

j (G) =

(nr − 1)v − v/2. Therefore, Φk(G′) = 1
n [(R + 1)v + (n − nr − 1)2v/3 + (nr − 1)v − v/2].

We thus get Φk(G′)−Φk(G) = 1
n [(n−nr− 4)v/6] and, since n ≥ 2+nr +nr′ and nr′ ≥ 3,

we have n − nr − 4 ≥ nr′ − 2 > 0. We conclude that agents i and k have an incentive to

establish a link. ♦

Proof of Proposition 8. Consider a simple network G. Proposition 5 implies that the

nontrivial petal of G has at least four agents. Suppose now to the effect of contradiction

that the nontrivial petal has more than four agents and, for n > 6, we have g1,2 = g2,3 =

· · · = gn−2,n−1 = gn−1,1 = 1 and g1,n = 1 without loss of generality. That is, {2, . . . , n−1}
is the nontrivial petal and {n} is the spoke of G. We will show that agent 4 has an incentive

to disconnect a link. In the original network G, it is easy to see that Φ4(G) = v. On the

27 Recall that we assume n ≥ 4.
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other hand, if agent 4 disconnects a link with agent 5, then she still enjoys Φ4(G′) = v in

the new network G′ = G − 45. Therefore, by Definition 4(i) of stability, agent 4 has an

incentive to disconnect the link. ♦

Proof of Proposition 10. Consider first a closed line segment of length > 4 and denote

it by G. We have Φi(G) = 1
m [v1 + vm + (m − 2)v] for all i = 1, . . . , m. On the other

hand, in the new network G′ = G + 1m where agents 1 and m establish a link, we have

Φ1(G′) = 1
m [v1 + vm + (m − 3)v1] > Φ1(G) since v1 ≥ 2v and m > 4. Likewise, we have

Φm(G′) = 1
m [v1 +vm +(m−3)vm] > Φm(G). Therefore, a closed line segment with m > 4

is not stable.

Consider next an open line segment of length > 4 and denote it again by G. We have

Φi(G) = 1
m [v1 + (m − 1)v] for all i = 1, . . . , m. On the other hand, in the new network

G′ = G + 2m where agents 2 and m establish a link, we have Φ2(G′) = 1
m [v1 + 2v + (m−

4)(v1+v)] > Φ2(G) since m > 4. We also have Φm(G′) = 1
m [v1+(m−1)v+v/2] > Φm(G).

Therefore, an open line segment with m > 4 is not stable. ♦

Proof of Proposition 11. It is straightforward to check that line networks of length

n ≤ 5 are stable. For n > 5, consider a line network G where g1,2 = g2,3 = · · · =

gn−1,n = 1 without loss of generality. We have Φi(G) = v for all i = 1, . . . , n. On the

other hand, in the new network G′ = G + 2n where agents 2 and n establish a link, we

have Φ2(G′) = 1
n [3v + (n − 4)2v] = 1

n [nv + (n − 5)v] > Φ2(G) since n > 5. We also have

Φn(G′) = 1
n [nv + v/2] > Φn(G). Therefore, line networks with n > 5 are not stable. ♦
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Figure 1: Some Specific Networks
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Figure 2: A Stable Simple Network
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Figure 3: Classification of Blocks
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Figure 4: Two Examples of General Networks
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Figure 5: A Possible Stable Network
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