
Journal of Economic Theory and Econometrics, Vol. 29, No. 4, Dec. 2018, 1–15

Optimal robust allocation of private goods∗

Kiho Yoon†

Abstract We characterize the optimal robust mechanisms for the allocation

of private objects, where robust mechanisms are those mechanisms that satisfy

dominant strategy incentive compatibility, ex-post individual rationality, and ex-

post no budget deficit, and optimal robust mechanisms are the ones that maxi-

mize the expected sum of players’ payoffs among all robust mechanisms. With a

certain assumption on the payoff of the lowest possible type, we provide a com-

plete description of optimal robust mechanisms with any number of players and

objects.

Keywords robust mechanism design, dominant strategy, budget balance, ex-

post individual rationality

JEL Classification C72, D47, D82

∗This work was supported by a Korea University Grant (K1709791).
†Department of Economics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Korea

02841; kiho@korea.ac.kr; Tel.: +82-2-3290-2222; Fax.: +82-2-3290-2716

Received October 23, 2018, Revised November 25, 2018, Accepted November 28, 2018



2 OPTIMAL ROBUST ALLOCATION OF PRIVATE GOODS

1. INTRODUCTION

We study the optimal allocation of private objects among many players. In

particular, we are interested in the mechanisms that satisfy dominant strategy

incentive compatibility, ex-post individual rationality, and ex-post no budget

deficit. We call this family of mechanisms as robust mechanisms since they do

not depend on the fine details of players’ beliefs.1 We characterize the optimal

robust mechanisms that maximize the expected sum of players’ payoffs among

all robust mechanisms. With a certain assumption on the payoff of the lowest

possible type, we provide a complete description of optimal mechanisms with

any number of players and objects.

Drexl and Kleiner (2015) and Shao and Zhou (2016) have analyzed simi-

lar problems, with the additional restrictions that (i) there are only two players

and one object, (ii) the mechanisms are deterministic, and (iii) the object should

always be assigned to one of the players. Their main finding is, roughly speak-

ing, that the optimal mechanism is either a posted price mechanism or an option

mechanism when the hazard rate of players’ type distributions that the mech-

anism designer perceives is weakly increasing.2 In particular, ex-post budget

balance is satisfied in the optimal mechanism.3

We obtain a similar result as a corollary of our main characterization, with-

out the aforementioned restrictions. The price to be paid for this generalization

is an assumption that essentially sets the payoff of the lowest possible type to

zero. We note that this assumption is also employed by Kuzmics and Steg (2017)

when characterizing deterministic robust mechanisms for public good provision

among many players. Hence, it appears to be a crucial condition when dealing

with more than two players.

Other related literature includes Hagerty and Rogerson (1987) and Čopič and

Ponsatı́ (2016), who characterize robust mechanisms for the bilateral trading set-

ting in which two players, a seller and a buyer, bargain over one private object:

They show that optimal robust mechanisms are posted price mechanisms, with

the ex-post budget balance condition imposed a priori instead of the weaker ex-

1There is a voluminous literature on the informational robustness of mechanisms to the com-

mon knowledge assumption concerning players’ beliefs about each other, after the pioneering

work of Bergemann and Morris (2005).
2Please refer to the next section for details. There are small but significant differences between

these papers.
3Ex-post no budget deficit is satisfied if the mechanism does not run a budget deficit in any

realization, whereas ex-post budget balance is satisfied if it runs neither a budget deficit nor a

budget surplus in any realization.
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post no budget deficit condition. We emphasize that, compared to the papers

cited above, only the present paper examines robust mechanisms for the alloca-

tion of private objects with any number of players and objects.

In the next section, we first consider the one object case and characterize

optimal robust mechanisms (Proposition 1). One of the implications is that it

is optimal to assign the object with probability one: Note that this property is

endogenously derived in the present paper, not exogenously assumed as in Drexl

and Kleiner (2015) and Shao and Zhou (2016). This is in nice contrast with

Guo and Conitzer (2014) and de Clippel et al. (2014) who show that it is op-

timal to sometimes destroy the object under the worst-case optimality criterion.

Corollaries 1, 2 and the subsequent examples further characterize optimal robust

mechanisms. Careful comparison with the existing literature is given. We then

extend the analysis to the case of multiple, possibly heterogeneous, objects when

each player demands at most one object (Proposition 2).

The analysis in this paper is rather standard. With an appropriate framework,

we not only derive the main results straightforwardly but also provide a useful

perspective on the existing results, in particular, clarify the assumptions that are

needed for the results. Similar techniques are used in Hartline and Roughgarden

(2008), Yoon (2011), Condorelli (2012), and Chakravarty and Kaplan (2013)

for the Bayesian analysis of the allocation problem with socially costly expen-

ditures. In comparison, we study dominant strategy incentive compatibility and

the expenditures may not be socially costly.

2. OPTIMAL ROBUST MECHANISMS

2.1. MAIN RESULTS

We consider a situation where one object is to be assigned to one of the

players in N = {1, . . . ,n}. Each player i ∈ I has a valuation vi for the object. We

assume that this is private information. The set of player i’s possible valuations is

given as Vi = [vi,vi], with 0= vi ≤ vi ≤∞. We set vi = 0 to align with most papers

in this literature: We note that it does not cause any challenge to the analysis or

meaningful change to the results to set vi > 0 in this paper. We use usual notation

such as v = (v1, . . . ,vn), V = V1 × ·· ·×Vn, v−i = (v1, . . . ,vi−1,vi+1, . . . ,vn) and

V−i =× j 6=iVj. We also use v = (vi,v−i) when we focus on i’s perspective.

A direct mechanism is a pair (p,x), with p : V → [0,1]n and x : V → ℜn.

Hence, if the reported vector of valuations is v′, then pi(v
′) is the assignment

probability that i gets the object and xi(v
′) is the expenditure that i exerts. The

expenditure is usually a monetary transfer made by i, but may also be a physical
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expenditure such as effort. Player i’s payoff when his true valuation is vi and the

reported vector of valuations is v′ is given as pi(v
′)vi − xi(v

′). Define

ui(v) = pi(v)vi − xi(v).

By the revelation principle, it is with no loss of generality to restrict our attention

to direct mechanisms.

The mechanism (p,x) is said to satisfy dominant strategy incentive compat-

ibility4 if

ui(vi,v−i)≥ pi(v
′
i,v−i)vi − xi(v

′
i,v−i), ∀i ∈ N,vi,v

′
i ∈Vi,v−i ∈V−i, (IC)

and ex-post individual rationality if

ui(vi,v−i)≥ 0, ∀i ∈ N, ∀vi ∈Vi,v−i ∈V−i. (IR)

The mechanism (p,x) is said to satisfy the ex-post no deficit condition if

n

∑
i=1

xi(v)≥ 0, ∀v ∈V, (ND)

and the probability condition if, in addition to the obvious requirement of pi(v)≥
0 for all i ∈ N and v ∈V ,

n

∑
i=1

pi(v)≤ 1, ∀v ∈V. (P)

We call the mechanism (p,x) to be robust if it satisfies (IC), (IR) and (ND) in

addition to (P).

We have the following lemma. We omit the proof since it is standard.

Lemma 1. The mechanism (p,x) satisfies (IC) and (IR) if and only if

vi ≤ v′i ⇒ pi(vi,v−i)≤ pi(v
′
i,v−i) ∀i ∈ N,vi,v

′
i ∈Vi,v−i ∈V−i, (M)

ui(v) =
∫ vi

0
pi(wi,v−i)dwi +ui(0,v−i) ∀i ∈ N,vi ∈Vi,v−i ∈V−i, (I)

ui(0,v−i)≥ 0 ∀i ∈ N,v−i ∈V−i. (L)

4Dominant strategy incentive compatibility is also termed truthfulness or strategyproofness.
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The first property (M) is monotonicity: player i’s assignment probability is

weakly increasing in vi. The second property (I) is integrability, and the last

property (L) is the ex-post individual rationality for the lowest possible type.

Our objective is to characterize the optimal robust mechanisms that maximize the

(ex-ante) expected sum of players’ payoffs among all robust mechanisms. Let us

assume that the mechanism designer has a subjective belief F(v) about players’

valuation vectors, and moreover, F(v) = F1(v1)×·· ·×Fn(vn) where Fi(vi) is the

distribution of player i’s valuation. Hence, we assume independence. Let fi(vi)
be the corresponding density function and let f (v) = f1(v1)×·· ·× fn(vn). Note

well that the players need not have any belief, let alone their beliefs are common.

That is, F pertains only to the designer.

It is sometimes desirable that the mechanism satisfies the ex-post budget bal-

ance condition
n

∑
i=1

xi(v) = 0, ∀v ∈V, (BB)

and/or the no waste condition

n

∑
i=1

pi(v) = 1, ∀v ∈V. (NW )

The ex-post budget balance condition is desirable when the designer does not

value the expenditure, and the no waste condition is desirable when the designer

does not value the object. Note that (BB) is stronger than (ND) and (NW ) is

stronger than (P).
Define

qi(vi) =
∫

V−i

pi(v) f−i(v−i)dv−i and

yi(vi) =
∫

V−i

xi(v) f−i(v−i)dv−i,

where f−i(v−i) is the joint density of v−i. Thus, qi(vi) is player i’s conditional

expected assignment probability and yi(vi) is player i’s conditional expected ex-

penditure. Since

xi(v) = pi(v)vi −
∫ vi

0
pi(wi,v−i)dwi + xi(0,v−i)

by definition of ui(v) and property (I) of Lemma 1, we have

yi(vi) = qi(vi)vi −
∫ vi

0
qi(wi)dwi + yi(0).
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Hence, the designer’s objective is to maximize

∫

V

( n

∑
i=1

[pi(v)vi − xi(v)]
)

f (v)dv =
n

∑
i=1

∫ vi

0
[qi(vi)vi − yi(vi)] fi(vi)dvi

=
n

∑
i=1

∫ vi

0

[

∫ vi

0
qi(wi)dwi − yi(0)

]

fi(vi)dvi

=
∫

V

( n

∑
i=1

1−Fi(vi)

fi(vi)
pi(v)

)

f (v)dv−
n

∑
i=1

yi(0)

subject to (M), (L), (ND) and (P).

Let us assume that ∑
n
i=1 yi(0)≥ 0, that is, the sum of the conditional expected

expenditure of the lowest possible type is not less than zero. This assumption

holds, for instance, when xi is physical expenditure and so negative values are

impossible a priori.5 It may also hold even when xi(v) < 0 for some i ∈ N and

v ∈V . We may alternatively impose that xi(0,v−i)≥ 0 for all i and v−i ∈V−i, i.e.,

any player’s expenditure is always greater than or equal to zero when his type is

the lowest possible type, as a requirement of the mechanism: The famous VCG

(Vickrey-Clarke-Groves) mechanism and the random allocation mechanism sat-

isfy this requirement, for instance. As a matter of fact, both the VCG mecha-

nism and the random allocation mechanism satisfy this requirement with equal-

ity. Note that this is weaker than the requirement of xi(0,v−i) = 0 for all i and

v−i ∈V−i imposed by Guo and Conitzer (2014) for their ‘linear’ allocation mech-

anisms. See also Morimoto and Serizawa (2015) for related conditions of no sub-

sidy and no subsidy for losers: No subsidy requires xi(vi,v−i)≥ 0 for all i,vi, and

v−i whereas no subsidy for losers requires xi(vi,v−i) ≥ 0 when pi(vi,v−i) = 0.

However, the assumption we impose is certainly restrictive and we will discuss

it more carefully after Corollary 2 below. Anyway, with this assumption to-

gether with the property (L) in Lemma 1, it is optimal to set xi(0,v−i) = 0 and

so yi(0) = 0 for the maximization. Hence, the designer’s problem is to choose

the assignment probabilities p to maximize

∫

V

( n

∑
i=1

1−Fi(vi)

fi(vi)
pi(v)

)

f (v)dv

5This is the case in the works of Hartline and Roughgarden (2008), Yoon (2011), Condorelli

(2012), and Chakravarty and Kaplan (2013).
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subject to (M), (ND) and (P).
Before presenting the main results, we remind the reader of a well-known

fact. A random variable X or its distribution F is said to be IFR if the hazard

rate (i.e., the failure rate) f (x)/(1−F(x)) is weakly increasing, and DFR if the

hazard rate is weakly decreasing. Equivalently, it is IFR (DFR) if the survival

rate 1−F(x) is log-concave (log-convex). Examples of IFR distributions are ex-

ponential, uniform, normal, logistic, power (for b ≥ 1), Weibull (for b ≥ 1), and

gamma (for b ≥ 1), while those of DFR distributions are exponential, Weibull

(for 0 < b ≤ 1), gamma (for 0 < b ≤ 1), and Pareto.6

To characterize optimal robust mechanisms, define the functions from [0,1]
to ℜ as follows:

hi(q) =
1−q

fi(F
−1
i (q))

, Hi(q) =
∫ q

0 hi(r)dr,

Gi(q) = convHi(q), gi(q) = G′
i(q).

Note that Gi is the convex hull of the function Hi, that is, the highest convex

function with Gi(q) ≤ Hi(q) for all q ∈ [0,1]. As a convex function, Gi is con-

tinuously differentiable except at countably many points, and its derivative is

monotone increasing. Define gi as extending by right-continuity when Gi is not

differentiable. Finally, let

ci(vi) = gi(Fi(vi)) and M(v) = {i ∈ N|ci(vi) = max
j∈N

c j(v j)}.

We have:

Proposition 1. Assume that ∑
n
i=1 yi(0)≥ 0. Let p : V → [0,1]n and x : V → ℜn

satisfy

pi(v) =

{

1/|M(v)| if i ∈ M(v)
0 otherwise,

and

xi(v) = pi(v)vi −
∫ vi

0
pi(wi,v−i)dwi.

Then, (p,x) represents an optimal robust mechanism.

Note that we use |S| to denote the cardinality of an arbitrary set S. We omit

the proof since it is a simple adaptation of that in Myerson (1981). Kuzmics

and Steg (2017) study a public good provision problem and characterize the

6Here, b is the shape parameter.
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deterministic direct mechanisms which satisfy (IC), (IR) and (BB).7 One of their

main results is that (i) A deterministic direct mechanism satisfies (IC), (IR) and

(BB) together with either ui(vi,v−i) = 0 for all i∈N and v−i ∈V−i or cost sharing

if and only if it is a threshold mechanism. They also show that (IC), (BB) and the

condition ui(vi,v−i)= 0 for i∈N and v−i ∈V−i imply cost sharing. Our result is a

similar characterization for the private good allocation problem. Note, however,

that Kuzmics and Steg (2017) characterize all robust mechanisms whereas we

characterize optimal robust mechanisms. One of the reasons for this difference is

that, besides the fact that they restrict attention only to deterministic mechanisms,

the public good problem is much simpler in the sense that the allocation rule in

the public good problem is a single decision variable, say r : V → {0,1}, while

that in the private good problem is pi : V → [0,1]n for all i∈N. Note in particular

that r(v) is weakly increasing in v j for every j ∈ N in the public good problem

since every player faces the same decision. In contrast, we can only guarantee

that pi(v) for each i ∈ N is weakly increasing in vi in the private good allocation

problem.

Another observation worth mentioning is that the optimal assignment rule

satisfies the no waste condition (NW ). Guo and Conitzer (2014) and de Clippel

et al. (2014) show that it may be better that the object is not always assigned

under some circumstances: They employ the worst-case optimality criterion and

show that it is optimal to sometimes destroy the object. In contrast, we show that

it is optimal to assign the object with probability 1, i.e., (NW ) is satisfied, when

we maximize the (ex-ante) expected sum of players’ payoffs.

We consider some special cases. First, assume that all Fi’s for i ∈ N are DFR.

Then, (1−Fi(vi))/ fi(vi) in the maximization problem is weakly increasing, and

we have Gi = Hi, gi = hi, and ci(vi) = (1−Fi(vi))/ fi(vi). Hence, the designer’s

objective is maximized by assigning the object to any one of the players with the

highest (1−Fi(vi))/ fi(vi). Summarizing,

Corollary 1. Assume that ∑
n
i=1 yi(0) ≥ 0. Assume also that all Fi’s for i ∈ N

are DFR. An optimal robust mechanism assigns the object with probability 1 to

the player(s) with the highest (1−Fi(vi))/ fi(vi). When players are symmetric

so that F1 = F2 = · · ·= Fn, an optimal robust mechanism assigns the object with

probability 1 to the player(s) with the highest vi.

7A deterministic direct mechanism has the property that the assignment rule takes only the

value zero or one. We note that Kuzmics and Steg (2017) call the ex-post no deficit condition

(ND) as ex-post budget balance and the ex-post budget balance condition (BB) as exact ex-post

budget balance.
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Next, assume that all Fi’s for i ∈ N are IFR. Then, hi(q) is weakly decreasing

in q and so Hi(q) is a concave increasing function, with Hi(0) = 0. Hence,

Gi(q) = Hi(1)q, a straight line connecting (0,0) and (1,H(1)), and we have

gi(q) = Hi(1) and ci(vi) = Hi(1). Observe that Hi(1) = E[vi] since

Hi(1) =
∫ 1

0

1− r

fi(F
−1
i (r))

dr =
∫ vi

0

1−Fi(vi)

fi(vi)
dFi(vi) = E[vi],

where the last equality follows from integration by parts. Hence, the designer’s

objective is maximized by assigning the object to any one of the players with the

highest E[vi], irrespective of the vi actually realized. Observe also that we have

xi(v) = 0 for all i ∈ N, and hence (BB) is satisfied, when the distribution is IFR.

Summarizing,

Corollary 2. Assume that ∑
n
i=1 yi(0)≥ 0. Assume also that all Fi’s for i ∈ N are

IFR.

(i) An optimal robust mechanism assigns the object with probability 1 to the

player(s) with the highest E[vi]. When players are symmetric so that F1 = F2 =
· · · = Fn, an optimal robust mechanism assigns the object to each player with

equal probability.

(ii) The ex-post budget balance (BB) is satisfied in the optimal robust mechanism.

Drexl and Kleiner (2015) and Shao and Zhou (2016) study the two-player

optimal private good allocation problem. Drexl and Kleiner (2015) consider

deterministic mechanisms that satisfy (IC), (IR), (ND) and (NW ). They show

that, when the distributions are IFR, the optimal robust mechanism is either a

posted price or an option mechanism. In particular, ex-post budget balance (BB)

is satisfied in the optimal robust mechanism. Shao and Zhou (2016) obtain a

similar result: They consider deterministic mechanisms that satisfy (IC), (ND)
and (NW ) with the assumption that both V1 and V2 are the unit interval [0,1] and

show that, when the distributions are both IFR and DRFR,8 the optimal robust

mechanism is either a posted price or an option mechanism. Hence, (BB) is

satisfied in the optimal robust mechanism. That is, they drop (IR) but need the

DRFR condition in comparison to Drexl and Kleiner (2015).

Corollary 2 obtains a similar result. We do not impose (NW ) a priori but de-

rive it endogenously. We also consider general assignment rules, not just deter-

ministic assignment rules. However, we impose the assumption that ∑
n
i=1 yi(0)≥

8A random variable X or its distribution F is said to be DRFR if the reversed failure rate

f (x)/F(x) is weakly decreasing.
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0. Note that the two-player case is special since p1(v)+ p2(v) = 1 always holds

with the no waste condition (NW ). That is, it is analytically close to the public

good provision problem of determining a single decision variable since we know

p2(v) once we know p1(v). In contrast, we consider the many-player optimal

private good allocation problem, which makes the analysis harder.

The assumption that ∑
n
i=1 yi(0) ≥ 0 is restrictive. To see this, consider a

posted price mechanism for two players which by default assigns the object to

player 1 and changes the assignment if and only if both players agree to trade

at a prespecified price π . Let 0 < π < v2. This mechanism satisfies (IC), (IR),
(BB) and (NW ), but we have y1(0) = −π(1−F2(π)) < 0 and y2(0) = 0. Thus,

our assumption is violated. Note, however, that this mechanism is asymmetric

across players. This implies that a certain symmetry assumption would exclude

this mechanism from consideration.

Note that this assumption together with the ex-post individual rationality

condition pins down ui(0,v−i) to zero for all i ∈ N and v−i ∈ V−i. This seems

to be the price to be paid when we deal with more than two players since, as

discussed above, this assumption is also needed for the main characterization of

the public good provision mechanisms in Kuzmics and Steg (2017).

We next show via a series of examples that generally optimal robust mecha-

nisms may take various forms when the distribution is neither IFR nor DFR.

Example 1. There are two players. Let Fi(vi) =
√

vi/2 on the support [vi,vi] =
[0,4] for i = 1,2. Note that this distribution is neither IFR nor DFR. Then, (1−
Fi(vi))/ fi(vi) = 4

√
vi−2vi, hi(q) = 8q(1−q) and Hi(q) = 4q2−8q3/3 on [0,1].

Thus,

Gi(q)=

{

4q2 − 8
3
q3 when 0 ≤ q ≤ 1

4
;

− 1
6
+ 3

2
q when 1

4
≤ q ≤ 1,

gi(q)=

{

8q(1-q) when 0 ≤ q ≤ 1
4
;

3
2

when 1
4
≤ q ≤ 1,

ci(vi)=

{

4
√

vi −2vi when 0 ≤ vi ≤ 1
4
;

3
2

when 1
4
≤ vi ≤ 4.
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When one of the players has a valuation vi of less than 1/4, it is optimal to assign

the object to the player with the higher vi. On the other hand, when both players

have valuations greater than or equal to 1/4, it is optimal to assign the object to

either player with equal probability.

Example 2. There are three players. Let Fi(vi) =
√

vi/2 on the support [vi,vi] =
[0,4] for i = 1,2 and F3(v3) = v3/2 on the support [0,2]. Thus, c1(v1) and c2(v2)
are given as in the previous example, and c3(v3) = 1 for all v3 ∈ [0,2]. When

max{v1,v2}< (3−2
√

2)/2, it is optimal to assign the object to player 3 regard-

less of the players’ valuations (even when player 3 has the lowest valuation.) On

the other hand, when max{v1,v2} > (3− 2
√

2)/2, it is optimal to never assign

the object to player 3 (even when player 3 has a higher valuation than players 1

and 2.)

Example 3. There are three players. Let Fi(vi) =
√

vi/2 on the support [vi,vi] =
[0,4] for i = 1,2 and F3(v3) = v3/3 on the support [0,3]. Thus, c1(v1) and

c2(v2) are given as in the previous examples, and c3(v3) = 3/2 for all v3 ∈ [0,3].
When max{v1,v2} < 1/4, it is optimal to assign the object to player 3. When

min{v1,v2} ≥ 1/4, it is optimal to assign the object to players 1, 2 or 3 with

equal probability. When v1 < 1/4 and v2 ≥ 1/4, it is optimal to assign the object

to player 2 or 3 with equal probability. When v1 ≥ 1/4 and v2 < 1/4, it is optimal

to assign the object to player 1 or 3 with equal probability.

2.2. AN EXTENSION TO MULTIPLE HETEROGENEOUS OBJECTS

It is only a matter of additional notation to extend the analysis to multi-

ple, possibly heterogeneous, objects: All we need to modify is the probability

condition of the assignment rule. Let there be m heterogeneous objects to be

assigned to the players in N with m < n. Assume that each player demands at

most one object. Assume also that the objects are commonly valued in that there

are a1 ≥ ·· · ≥ am > 0 such that player i’s payoff is ∑
m
k=1 pk

i (v
′)akvi − xi(v

′) in

which pk
i (v

′) is the probability that i gets the k-th object and xi(v
′) is the expen-

diture that i makes when the reported vector of valuations is v′. If we define

pi(v
′) = ∑

m
k=1 ak pk

i (v
′), then essentially the same analysis applies, with the prob-

ability condition (P) adjusted to9

n

∑
i=1

pi(v)≤
m

∑
k=1

ak, ∀v ∈V. (P′)

9Since each player demands at most one object, we also have ∑
m
k=1 pk

i (v)≤ 1 for all i= 1, . . . ,n

as well as ∑
n
i=1 pk

i (v)≤ 1 for all k = 1, . . . ,m.
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Thus, the designer’s problem becomes to choose the assignment probabilities

pk
i ’s to maximize

∫

V

( m

∑
k=1

ak
n

∑
i=1

1−Fi(vi)

fi(vi)
pk

i (v)
)

f (v)dv

subject to (M), (ND) and (P′). It is then optimal to assign the first object to the

player with the highest ci(vi), the second object to the player with the second

highest ci(vi) and so on up until all m objects are assigned, with any ties broken

evenly. To be precise, define

M1(v) = {i ∈ N|ci(vi) = max
j∈N

c j(v j)}

M2(v) = {i ∈ N \M1(v)|ci(vi) = max
j∈N\M1(v)

c j(v j)}

...

Ml(v) = {i ∈ N \ (M1(v)∪· · ·∪Ml−1(v))|ci(vi) = max
j∈N\(M1(v)∪···∪Ml−1(v))

c j(v j)}

...

This process ends in a finite step, say step l, and l ≤ n. We have:

Proposition 2. Assume that ∑
n
i=1 yi(0)≥ 0. For a player i ∈ Ml(v),

(i) If |M1(v)∪· · ·∪Ml−1(v)| ≥ m, then let pk
i (v) = 0 for all k = 1, . . . ,m.

(ii) If |M1(v)∪· · ·∪Ml−1(v)|= k < m, then let

pk+1
i (v) = · · ·= p

min{k+|Ml(v)|,m}
i (v) =

1

|Ml(v)|
and

pk′
i (v) = 0 for all k′ ∈ {1, . . . ,m}\{k+1, . . . ,min{k+ |Ml(v)|,m}}.

Then, these assignment probabilities pk
i (v)’s together with

xi(v) = pi(v)vi −
∫ vi

0
pi(wi,v−i)dwi

represent an optimal robust mechanism.

It is obvious that all the subsequent results in the previous subsection carry

over without any significant modification.
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3. DISCUSSION

We have characterized optimal robust mechanisms for the allocation of pri-

vate objects among many players, where robust mechanisms are those mecha-

nisms that satisfy dominant strategy incentive compatibility, ex-post individual

rationality, and ex-post no budget deficit, and optimal robust mechanisms are

the ones that maximize the expected sum of players’ payoffs among all robust

mechanisms.

The specific form of the optimal robust mechanisms critically depends on

how the mechanism designer’s subjective belief F(v) = F1(v1)× ·· · × Fn(vn)
about players’ valuation vector behaves. If all Fi’s are DFR, an optimal robust

mechanism assigns the objects to the player(s) with the highest (1−Fi(vi))/ fi(vi)
’s, and in particular to those with the highest vi’s when players are symmetric. If

all Fi’s are IFR, an optimal robust mechanism assigns the objects to the player(s)

with the highest E[vi]’s, and in particular assigns them randomly when players

are symmetric. An optimal robust mechanism may take various forms if Fi’s are

neither DFR nor IFR. In any case, the optimal robust mechanisms never withhold

or destruct the objects. This property is in nice contrast with Guo and Conitzer

(2014) and de Clippel et al. (2014), as discussed above.

We have shown that budget balance holds in the optimal mechanism when

Fi’s are IFR. This property is also obtained in the models of Drexl and Kleiner

(2015) and Shao and Zhou (2016) who impose the additional restrictions that (i)

there are only two players and one object, (ii) the mechanisms are deterministic,

and (iii) the object should always be assigned to one of the players.10 The forms

of the optimal robust mechanisms differ, however: It is either a posted price or

an option mechanism in their models whereas it is a mechanism that assigns the

objects according to E[vi] in this paper.

Compared to Drexl and Kleiner (2015) and Shao and Zhou (2016), the cur-

rent paper examines robust mechanisms for the allocation of private goods when

there are more than two players as well as when there is more than one object.

This was made possible due to our assumption that ∑
n
i=1 yi(0) ≥ 0, that is, the

sum of the conditional expected expenditure of the lowest possible type is not

less than zero. This assumption is reasonable for some situations but certainly

restrictive. It remains as a future research agenda whether we can dispense with

this assumption.

10Note that we derive the last property endogenously whereas they impose it exogenously.
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[5] Čopič, J., Ponsatı́, C. (2016), “Optimal robust bilateral trade: Risk neutral-

ity,” Journal of Economic Theory 163, 276-287.

[6] Drexl, M., Kleiner, A. (2015), “Optimal private good allocation: The case

for a balanced budget,” Games and Economic Behavior 94, 169-181.

[7] Guo, M., Conitzer, V. (2014), “Better redistribution with inefficient alloca-

tion in multiunit auctions,” Articial Intelligence 216, 287-308.

[8] Hagerty, K.M., Rogerson, W.P. (1987), “Robust trading mechanisms,”

Journal of Economic Theory 42, 94-107.

[9] Hartline, J., Roughgarden, T. (2008), “Optimal mechanism design and

money burning,” STOC08.

[10] Kuzmics, C., Steg, J.-H. (2017), “On public good provision mechanisms

with dominant strategies and balanced budget,” Journal of Economic The-

ory 170, 56-69.

[11] Morimoto, S., Serizawa, S. (2015), “Strategy-proofness and efficiency with

non-quasi-linear preferences: A characterization of minimum price Wal-

rasian rule,” Theoretical Economics 10, 445-487.

[12] Myerson, R. (1981), “Optimal auction design,” Mathematics of Operations

Research 6, 58-73.

[13] Shao, R., Zhou, L. (2016), “Optimal allocation of an indivisible good,”

Games and Economic Behavior 100, 95-112.



KIHO YOON 15

[14] Yoon, K. (2011), “Optimal mechanism design when both allocative ineffi-

ciency and expenditure inefficiency matter,” Journal of Mathematical Eco-

nomics 47, 670-676.


