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Abstract

This paper shows that the quality scores in sponsored search auctions can be optimally chosen
to extract all the advertisers’ surplus. The reason for the full extraction result is that the quality
scores may effectively set all the bidders’ valuations equal to the highest valuation, which induces
intense bidding competition.
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1 Introduction
The sponsored search auction is an innovative trading institution in online advertis-
ing. Whenever an Internet user types in a particular search keyword, a new auction
is triggered for advertising slots that will display sponsored search results or ads
alongside with the organic search results.1 Advertisers pay to the advertising in-
termediary only when their ads are clicked. This trading institution has evolved
over time since its inception in 1997.2 In the current auction format, several adver-
tising slots or positions are simultaneously auctioned off using a payment scheme
apparently similar to the second price auction. In particular, each advertiser or bid-
der pays not his/her own bid but the minimum price that would retain the current
position. Edelman et al. (2007) call the auction rule in practice as the generalized
second-price (GSP) auction.

One of the salient features of this auction is the use of quality scores, which
influence the advertisers’ positions as well as the minimum bid requirements. As
for the positions, the advertisers are not ordered by their bid amounts but by the ad-
justed bids multiplied by the quality scores. Google initially used the click-through
rate to determine the quality score. It later switched to a less transparent system
that incorporates such factors as the relevance of the keywords to its ad group, the
landing page quality, the advertisers’ historical performance, and other relevant fac-
tors.3 Yahoo! initially used only the bids to determine the order, but began to use a
ranking system similar to Google’s in 2007.

The quality score is designed to ensure that the most relevant ads are shown
on the advertising slots. This will generate as many actual clicks as possible, and
may help the advertisers and the Internet users as well as Google and Yahoo! The
quality score can, in fact, achieve more: This paper shows that, by optimally choos-
ing the quality scores, it is possible to extract all the advertisers’ surplus. The reason
for the full extraction result is that the quality scores may effectively make adver-
tisers’ valuations equal to the highest valuation, thus inducing fierce bidding com-
petition. We note that this result is obtained in a complete information framework,
so it may seem obvious in that the advertising intermediary may directly charge ad-
vertisers’ valuations. We only mention here that we are interested not in proposing
conceivable mechanisms, but in analyzing the prevailing trading institution of the

1 The auction for keywords has started in search advertising, and expanded to contextual advertising
on content pages. Though this paper concentrates on the sponsored search auctions, the analysis
applies to the wider auctions for keywords.
2For the early history of sponsored search advertising, see Battelle (2005) as well as the papers
cited below.
3The exact formula is not released publicly.
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GSP auction with a special attention to the quality score. More discussion on this
and other modeling choices are relegated to the last section.

The sponsored search auction has recently attracted much academic atten-
tion, especially in computer science. The basic properties of sponsored search auc-
tions have been investigated in early papers including Aggarwal et al. (2006), Edel-
man et al. (2007), and Varian (2007). The actual practice and evolution of search
advertising is nicely presented in Edelman et al. (2007), Evans (2008, 2009), and
Liu et al. (2009). Other notable papers in economics include Athey and Ellison
(2007), Börgers et al. (2007), and Milgrom (2009).

2 Main Results
Consider a search advertising market organized by a search site (such as Google),
a portal (such as Yahoo!), or any entity that acts as an advertising intermediary. We
will henceforth call this entity as the auctioneer since auctions have been used in
practice. There are K positions (advertising slots) and I bidders (advertisers) with
K ≤ I. Let ck be the (expected) number of views that an advertisement in position
k = 1, . . . ,K effectively receives. Without loss of generality, order the positions
so that c1 > · · · > cK > 0. We may also set cK+1 = · · · = cI = 0 for analytic
convenience. Each bidder is characterized by two parameters. For i = 1, . . . , I, let ri

be the positive click-through rate (CTR for short) or the rate of clicks when viewed,
and let vi be the positive valuation per click. The CTR is related to the relevance
of the advertisement with respect to the particular keyword, while the valuation is
related to the final payoff resulting from the clicks. Hence, if bidder i is assigned to
position k, the (expected) number of clicks is ckri and the total payoff that bidder i
obtains is ckrivi. Note that (i) each position’s number of views is independent of the
bidder, and (ii) each bidder’s valuation is independent of the position.4

We describe the auction rule used in search advertising markets, which is
termed as the generalized second-price auction by Edelman et al. (2007), with an
emphasis to the quality score. Consider a specific keyword. Bidders submit non-
negative bids bi’s per click. Bid bi is multiplied by the quality score qi > 0, and
these adjusted bids are arranged in a decreasing order.5 For this, let π : I → I be the
permutation of bidders according to the order of adjusted bids qibi so that π(k) is the

4In a more general setting, the total payoff of bidder i who is assigned to position k may be defined
as ck

i vk
i . The value vk

i may decrease in k if the conversion rate (that is, the rate of transactions/actions
when clicked) is declining. The case when ck

i = ckri, as we specify here, is known as the separable
or multiplicative form. Most papers including Edelman et al. (2007) and Varian (2007) adopt the
separable form, while Börgers et al. (2007) discuss the general setting as well.
5Ties can be broken in any pre-specified way.
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bidder with the k-th highest adjusted bid. Then, we have qπ(1)bπ(1) ≥ · · · ≥ qπ(I)bπ(I).
Bidder π(k) for k = 1, . . . ,K is assigned to position k, that is, a bidder with the
highest adjusted bid is assigned to the highest position (position 1), a bidder with
the second highest adjusted bid is assigned to the second highest position (position
2) and so on. Bidder π(k) for k = 1, . . . ,K is charged the minimum price to retain
the current position, so pays qπ(k+1)bπ(k+1)/qπ(k) per click. Note that bπ(K+1) is well-
defined when K < I. Otherwise, i.e., when K = I, we can let bπ(K+1) = 0.6 A
bidder in position k has a net payoff or surplus of ckrπ(k)(vπ(k) − qπ(k+1)bπ(k+1)/qπ(k))
for k = 1, . . . ,K. A bidder without a position does not pay and has a surplus of
zero.

When qi = 1 for all i, the bidders are arranged according to their submitted
bids and the winning bidders pay the next bid, i.e., bidder π(k) pays bπ(k+1) per click
for k = 1, . . . ,K. This corresponds to the original auction format that Yahoo! has
used. On the other hand, when qi = ri for all i, bidders are arranged according
to the CTR-adjusted bids and bidder π(k)’s total payment is ckrπ(k+1)bπ(k+1). This
corresponds to the original auction format that Google has used.

Following Edelman et al. (2007) and Varian (2007), we study the static en-
vironment with complete information. One of the reasons is that it is extremely
complicated, if not impossible, to analyze the generalized second price auction with
multiple positions as a game of incomplete information. Moreover, as these papers
claim, the assumption of complete information is a reasonable first approximation
since all relevant information about bidders is likely to be inferred over time due
to the ease of experimenting with bidding strategies in real-world sponsored search
auctions.7

Definition 1 A Nash equilibrium is a set of bids {b1, . . . , bI} that satisfies

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

)
≥ c jrπ(k)

(
vπ(k) −

qπ( j+1)bπ( j+1)

qπ(k)

)
for j > k, and

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

)
≥ c jrπ(k)

(
vπ(k) −

qπ( j)bπ( j)

qπ(k)

)
for j < k.

6Alternatively, we can set bI+1 = 0 by convention. Since we have set cK+1 = · · · = cI = 0, either
convention will do for the following analysis.
7Varian (2007, p. 1175) notes, ‘It is very easy to experiment with bidding strategies in real-world
ad auctions. Google reports click and impression data on an hour-by-hour basis (...) The availability
of such tools and services, along with the ease of experimentation, suggest that the full-information
assumption is a reasonable first approximation. As we will see below, the Nash equilibrium model
seems to fit the observed choices well.’ Edelman et al. (2007 p. 249) also notes, ‘... advertisers are
likely to learn all relevant information about other’s values.’
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Hence, bidders do not have incentives to change their assigned positions.
Note that this definition reflects the asymmetry: Moving to a higher position re-
quires beating the adjusted bid of who occupies that position, while moving to a
lower position requires beating the adjusted bid of who occupies the position next
to that position (i.e., the price the bidder of that position pays). A refinement of the
Nash equilibrium concept is proven to be extremely useful: Edelman et al. (2007)
call it the locally envy-free equilibrium and Varian (2007) calls it the symmetric
Nash equilibrium.

Definition 2 A symmetric Nash equilibrium (SNE) is a set of bids {b1, . . . , bI} that
satisfies

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

)
≥ c jrπ(k)

(
vπ(k) −

qπ( j+1)bπ( j+1)

qπ(k)

)
for k, j = 1, . . . I.

Equivalently, an SNE set of bids satisfies

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

)
≥ c j

(
qπ(k)vπ(k) − qπ( j+1)bπ( j+1)

)
for k, j = 1, . . . I.

Observe that this definition of SNE gives the inequalities

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

)
≥ ck+1

(
qπ(k)vπ(k) − qπ(k+2)bπ(k+2)

)
and

ck+1
(
qπ(k+1)vπ(k+1) − qπ(k+2)bπ(k+2)

)
≥ ck

(
qπ(k+1)vπ(k+1) − qπ(k+1)bπ(k+1)

)
,

which can be combined to get

(ck − ck+1)qπ(k+1)vπ(k+1) + ck+1qπ(k+2)bπ(k+2) ≤ ckqπ(k+1)bπ(k+1)

≤ (ck − ck+1)qπ(k)vπ(k) + ck+1qπ(k+2)bπ(k+2).

Thus, each bidder’s ckqπ(k+1)bπ(k+1) is bounded below and above. We can express the
upper and lower boundary cases in the previous inequalities recursively as

ckqπ(k+1)bU
π(k+1) = (ck − ck+1)qπ(k)vπ(k) + ck+1qπ(k+2)bU

π(k+2) and

ckqπ(k+1)bL
π(k+1) = (ck − ck+1)qπ(k+1)vπ(k+1) + ck+1qπ(k+2)bL

π(k+2),

from which we have

ckqπ(k+1)bU
π(k+1) =

K∑
j=k

(c j − c j+1)qπ( j)vπ( j),

ckqπ(k+1)bL
π(k+1) =

K∑
j=k

(c j − c j+1)qπ( j+1)vπ( j+1).
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Therefore, the lower bound of the auctioneer’s revenue can be expressed in terms
of valuations as

K∑
k=1

ckrπ(k)qπ(k+1)bL
π(k+1)/qπ(k) =

K∑
k=1

rπ(k)

qπ(k)

K∑
j=k

(c j − c j+1)qπ( j+1)vπ( j+1)

and the upper bound can be similarly expressed. We will work with the lower
bound. This bound is prominent in that it coincides with the Vickrey payment when
the quality score qi is set to the click-through rate ri.8 Moreover, as we show in
Proposition 2 below, the optimal revenue even with the lower bound SNE extracts
all the bidders’ surplus, hence all the other SNEs a fortiori achieve the full extrac-
tion of surplus.

To keep notations simple, we will henceforth let r1v1 ≥ r2v2 ≥ · · · ≥ rIvI

without loss of generality. That is, we rename the bidders in the order of CTR-
adjusted valuations rivi’s. When the number of bidders exceeds the number of po-
sitions, we have:

Proposition 1 Assume K < I. For any α ∈ [0, 1], the auctioneer can choose the
quality scores so that, for all k = 1, · · · ,K, the lower bound of the auctioneer’s rev-
enue from position k is exactly 100α percent of the total payoff ckrkvk of advertiser
k who occupies that position.

Proof. It will be confirmed shortly that π(k) = k all k = 1, . . . ,K +1 with our choice
of quality scores. Hence, the revenue from position K is rK

qK
(cK − cK+1)qK+1vK+1. By

choosing qK+1 =
αqKvK
vK+1

, that is, by setting qK+1vK+1 = αqKvK , it becomes αcKrKvK

since cK+1 = 0. Next, the revenue from position K − 1 is

rK−1

qK−1

[
(cK−1 − cK)qKvK + (cK − cK+1)qK+1vK+1

]
=

rK−1

qK−1

[
(cK−1 − cK) + α(cK − cK+1)

]
qKvK =

rK−1

qK−1

[
cK−1 − (1 − α)cK

]
qKvK .

By choosing qK =
αcK−1qK−1vK−1

[cK−1−(1−α)cK ]vK
, that is, by setting [cK−1−(1−α)cK]qKvK = αcK−1×

qK−1vK−1, it becomes αcK−1rK−1vK−1. By backward induction, the revenue from
position k = 1, . . . ,K becomes αckrkvk by choosing

qk+1 =
αckqkvk

[ck − (1 − α)ck+1]vk+1
,

8Edelman et al. (2007) give special attention to the lower bound in their Theorem 1. Varian (2007)
also argues that the lower bound is the most plausible outcome.
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that is, by setting [ck − (1 − α)ck+1]qk+1vk+1 = αckqkvk. Since αck

ck−(1−α)ck+1 ≤ 1 for all
α ∈ [0, 1] and k = 1, . . . ,K, we have q1v1 ≥ q2v2 ≥ · · · ≥ qK+1vK+1. By choosing
q j for j = K + 2, . . . , I to satisfy qK+1vK+1 ≥ q jv j, we conclude that π(k) = k for
k = 1, . . . ,K +1 because it is easy to show that the adjusted valuations qivi’s respect
the order of adjusted bids qibi’s in any SNE. �

This proposition, in particular, implies that the auctioneer can extract all the
advertisers’ surplus by setting α = 1.

Proposition 2 (Full extraction of advertisers’ surplus) Assume K < I. The opti-
mal quality scores (q∗1, . . . , q

∗
I ) that maximize the lower bound of the auctioneer’s

revenue satisfy

q∗1v1 = q∗2v2 = · · · = q∗K+1vK+1 ≥ q∗jv j for all j = K + 2, . . . , I

and the auctioneers’ optimal revenue is equal to the maximal sum of advertisers’
total payoffs,

∑K
k=1 ckrkvk.9 10

Hence, the auctioneer can extract all the advertisers’ surplus in the lower
bound SNE. Since bidders enjoy a nonnegative surplus in any SNE, this proposition im-
plies that this is also the best outcome for the auctioneer in any SNE.

What is the reason behind these results? It is straightforward to see that, with
the optimal quality scores of Proposition 2, we have bk = vk for k = 2, . . . ,K + 1,
and the payment per click for bidder k is vk for k = 1, . . . ,K. Thus, the optimal
quality scores effectively set all the bidders’ valuations equal to the highest valu-
ation, which induces intense bidding competition. In the optimal auction design
under incomplete information, Myerson (1981) has shown that the auctioneer can
increase revenue by giving bid preferences to weak bidders whose expected will-
ingness to pay is lower.11 Observe that optimal quality scores work similarly as
bid preferences in our complete information setting of the generalized second-price

9One obvious choice of the quality scores is to set q∗1 = 1, q∗k = v1/vk for k = 2, . . . ,K + 1, and
q∗j = 0 for j = K + 2, . . . , I.
10Observe that the sum of advertisers’ total payoffs is maximized when bidders are placed according
to the order of rivi’s.
11Liu and Chen (2006) exploit this insight in the context of sponsored search auctions. They consider
the first-price auction format and only the case of a single position, which are at wide variance with
actual practice. See other related papers in their reference, too. On the other hand, Lahaie and
Pennock (2007) start discussing quality scores under complete information setting. They move on
to the incomplete information setting and, with a specific form of qi = rαi for the quality score, show
by simulation that higher correlation between ri and vi leads to a smaller optimal α.
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auction. Observe also that optimal quality scores not only increase the auctioneer’s
revenue but in fact extract all the advertisers’ surplus.12

Notwithstanding the full extraction result, it should be noted that the short-
term incentive of exploitation may be checked by the long-term incentive of market
cultivation. Simply put, sponsored search auctions cannot survive in the end unless
advertisers find their surplus satisfactory. Hence, the advertising intermediaries
such as Google and Yahoo! may wish to guarantee normal profits to the advertisers.
Proposition 1 above shows that it is possible to extract any portion of advertisers’
surplus.

We finally mention that full extraction does not occur when K = I since
there cannot be enough competition for positions. A straightforward derivation
along the lines of the proof of Proposition 1 shows the following: The revenue from
position K is zero, and generally the revenue from position k is (ck−cK)rkvk. Bidder
k’s surplus is cKrkvk = ckrkvk − (ck − cK)rkvk > 0 for k = 1, . . . ,K.

3 Discussion
We have shown that the quality scores can be optimally chosen to extract all (or any
portion) of the advertisers’ surplus. This proposition was established in the static
model of complete information. As we have discussed before Definition 1, this
modeling choice is a reasonable first approximation since all relevant information
about advertisers are likely to be learned via frequent interactions and experimen-
tations. Nevertheless, the complete information assumption may be problematic if
it is hard to identify which of its equilibrium predictions are meaningful approxi-
mations. Fortunately in this regard, we have established that all equilibria of the
complete information game leads to the same conclusion of full surplus extraction.

On the other hand, the full extraction was shown to be possible only for
the symmetric Nash equilibrium outcomes. Comparing Definitions 1 and 2, the
symmetric Nash equilibrium replaces the term qπ( j)bπ( j) in the Nash equilibrium
with the term qπ( j+1)bπ( j+1) for positions higher than k-th position. This makes the
equilibrium inequalities symmetric both for the higher and the lower positions, and
creates a tighter set of restrictions. As Börgers et al. (2007) point out, however,
this restriction is not justified by usual game-theoretic refinement arguments. They
also show that this symmetry restriction significantly reduces the set of equilibrium

12We conjecture that full extraction may not be feasible under incomplete information unless valu-
ations are correlated across advertisers in the spirit of Crémer and McLean (1988).
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outcomes.13 Therefore, it remains as an open question to see whether the same
result holds for the Nash equilibrium outcomes.14

One may argue that the full extraction result is not surprising or even trivial
since, under complete information setting, the advertising intermediary can charge
each advertiser’s true valuation. Observe however that the advertising intermediary
is not able to directly charge true valuations, nor bidders pay their own bids, under
the established institution of the generalized second price auction. To put it differ-
ently, suppose an advertising intermediary gets to know advertisers’ true valuations,
but it cannot directly charge these valuations due to the trading rule evolved in the
business. What we have shown is that the quality score may be used as an effective
instrument to charge true valuations in an auction that appears to set lower prices
than bidders’ stated valuations.

References
[1] Aggarwal, G., Goel, A., Motwani, R. (2006), “Truthful auctions for pricing

search keywords,” Proceedings of the 2006 ACM Conference on Electronic
Commerce.

[2] Athey, S., Ellison, G. (2007), “Position auctions with consumer search,”
Manuscript.

[3] Battelle, J. (2005), The Search, Portfolio Hardcover.
[4] Börgers, T., Cox, I., Pesendorfer, M., Petricek, V. (2007), “Equilibrium bids

in auctions of sponsored links: Theory and evidence,” Manuscript.
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