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Optimal quality scores in sponsored search auctions:

Full extraction of advertisers’ surplus

1 Introduction

The sponsored search auction is an innovative trading institution in online advertising.

Whenever an Internet user types in a particular search keyword, a new auction is triggered

for advertising slots that will display sponsored search results or ads alongside with the

organic search results.1 Advertisers pay to the advertising intermediary only when their

ads are clicked. This trading institution has evolved over time since its inception in 1997.2

In the current auction format, several advertising slots or positions are simultaneously

auctioned off using a payment scheme apparently similar to the second price auction. In

particular, each advertiser or bidder pays not his/her own bid but the minimum price that

would retain the current position. Edelman et al. (2007) call the auction rule in practice

as the generalized second-price (GSP) auction.

One of the salient features of this auction is the use of quality scores, which influence

the advertisers’ positions as well as the minimum bid requirements. As for the positions,

the advertisers are not ordered by their bid amounts but by the adjusted bids multiplied

by the quality scores. Google initially used the click-through rate to determine the quality

score. It later switched to a less transparent system that incorporates such factors as

the relevance of the keywords to its ad group, the landing page quality, the advertisers’

historical performance, and other relevant factors.3 Yahoo! initially used only the bids to

determine the order, but began to use a ranking system similar to Google’s in 2007.

The quality score is designed to ensure that the most relevant ads are shown on the

1 The auction for keywords has started in search advertising, and expanded to contextual advertising
on content pages. Though this paper concentrates on the sponsored search auctions, the analysis applies
to the wider auctions for keywords.

2 For the early history of sponsored search advertising, see Battelle (2005) as well as the papers cited
below.

3 The exact formula is not released publicly.
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advertising slots. This will generate as many actual clicks as possible, and may help the

advertisers and the Internet users as well as Google and Yahoo! The quality score can, in

fact, achieve more: This paper shows that, by optimally choosing the quality scores, it is

possible to extract all the advertisers’ surplus. The reason for the full extraction result is

that the quality scores may effectively make advertisers’ valuations equal to the highest

valuation, thus inducing fierce bidding competition.

The sponsored search auction has recently attracted much academic attention, espe-

cially in computer science. The basic properties of sponsored search auctions have been

investigated in early papers including Aggarwal et al. (2006), Edelman et al. (2007), and

Varian (2007). The actual practice and evolution of search advertising is nicely presented

in Edelman et al. (2007), Evans (2008, 2009) and Liu et al. (2009). Other notable papers

in economics include Athey and Ellison (2007), Börgers et al. (2007), and Milgrom (2009).

In the next section, we first describe the auction rule used in the search advertising

markets with an emphasis to the quality score. We then list some properties that closely

resemble those in Varian (2007). The main result shows that full extraction of advertisers’

surplus is always possible when the number of advertisers exceeds the number of advertising

slots. Section 3 contains discussion.

2 Main Results

2.1. Preliminaries

Consider a search advertising market organized by a search site (such as Google),

a portal (such as Yahoo!), or any entity that acts as an advertising intermediary. We

will henceforth call this entity as the auctioneer since auctions have been used in practice.

There are K positions (advertising slots) and I bidders (advertisers) with K ≤ I. Let ck be

the (expected) number of views that an advertisement in position k = 1, . . . , K effectively

receives. Without loss of generality, order the positions so that c1 > · · · > cK > 0. We

may also set cK+1 = . . . = cI = 0 for analytic convenience. Each bidder is characterized by
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two parameters. For i = 1, . . . , I, let ri be the positive click-through rate (CTR for short)

or the rate of clicks when viewed, and let vi be the positive valuation per click. The CTR

is related to the relevance of the advertisement with respect to the particular keyword,

while the valuation is related to the final payoff resulting from the clicks. Hence, if bidder

i is assigned to position k, the (expected) number of clicks is ckri and the total payoff that

bidder i obtains is ckrivi. Note that (i) each position’s number of views is independent of

the bidder, and (ii) each bidder’s valuation is independent of the position.4

We describe the auction rule used in search advertising markets, which is termed as

the generalized second-price auction by Edelman et al. (2007), with an emphasis to the

quality score. Bidders submit non-negative bids bi’s per click for their interested keywords.

Bid bi is multiplied by the quality score qi > 0, and these adjusted bids are arranged in

a decreasing order.5 For this, let π : I → I be the permutation of bidders according to

the order of adjusted bids qibi so that π(k) is the bidder with the k-th highest adjusted

bid. Then, we have qπ(1)bπ(1) ≥ · · · ≥ qπ(I)bπ(I). Bidder π(k) for k = 1, . . . ,K is assigned

to position k, and pays qπ(k+1)bπ(k+1)/qπ(k) per click. That is, a bidder with the highest

adjusted bid is assigned to the highest position (position 1), a bidder with the second

highest adjusted bid is assigned to the second highest position (position 2) and so on, and

then each bidder is charged the minimum price to retain the current position. Note that

bπ(K+1) is well-defined when K < I. Otherwise, i.e., when K = I, we can let bπ(K+1) = 0.6

A bidder in position k has a net payoff or surplus of ckrπ(k)(vπ(k) − qπ(k+1)bπ(k+1)/qπ(k))

for k = 1, . . . , K. A bidder without a position does not pay and has a surplus of zero.

When qi = 1 for all i, the bidders are arranged according to their submitted bids

4 In a more general setting, the total payoff of bidder i who is assigned to position k may be defined
as ck

i vk
i . The value vk

i may decrease in k if the conversion rate (that is, the rate of transactions/actions

when clicked) is declining. The case when ck
i = ckri, as we specify here, is known as the separable or

multiplicative form.

5 Ties can be broken in any pre-specified way.

6 Alternatively, we can set bI+1 = 0 by convention. Since we have set cK+1 = · · · = cI = 0, either

convention will do for the following analysis.
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and the winning bidders pay the next bid, i.e., bidder π(k) pays bπ(k+1) per click for

k = 1, . . . , K. This corresponds to the original auction format that Yahoo! has used. On

the other hand, when qi = ri for all i, bidders are arranged according to the CTR-adjusted

bids and bidder π(k)’s total payment is ckrπ(k+1)bπ(k+1). This corresponds to the original

auction format that Google has used. The former is known as the rank-by-bid (RBB) rule,

while the latter is known as the rank-by-revenue (RBR) rule.

Following Edelman et al. (2007) and Varian (2007), we study the static environment

with complete information. One of the reasons is that it is extremely complicated, if

not impossible, to analyze the generalized second price auction with multiple positions

as a game of incomplete information. Moreover, as these papers claim, the assumption

of complete information is a reasonable first approximation since all relevant information

about bidders is likely to be inferred over time due to the ease of experimenting with

bidding strategies in real-world sponsored search auctions. Varian (2007, p. 1175) notes,

‘It is very easy to experiment with bidding strategies in real-world ad auctions. Google

reports click and impression data on an hour-by-hour basis (...) The availability of such

tools and services, along with the ease of experimentation, suggest that the full-information

assumption is a reasonable first approximation. As we will see below, the Nash equilibrium

model seems to fit the observed choices well.’ Edelman et al. (2007, p. 249) also notes, ‘...

advertisers are likely to learn all relevant information about other’s values.’

Definition 1. A Nash equilibrium is a set of bids {b1, . . . , bI} that satisfies

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

) ≥ cjrπ(k)

(
vπ(k) −

qπ(j+1)bπ(j+1)

qπ(k)

)
for j > k, and

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

) ≥ cjrπ(k)

(
vπ(k) −

qπ(j)bπ(j)

qπ(k)

)
for j < k.

Hence, bidders do not have incentives to change their assigned positions. Note that

this definition reflects the asymmetry: Moving to a higher position requires beating the

adjusted bid of who occupies that position, while moving to a lower position requires

beating the adjusted bid of who occupies the position next to that position (i.e., the price
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the bidder of that position pays). A refinement of the Nash equilibrium concept is proven

to be extremely useful: Edelman et al. (2007) call it the locally envy-free equilibrium and

Varian (2007) calls it the symmetric Nash equilibrium.

Definition 2. A symmetric Nash equilibrium (SNE) is a set of bids {b1, . . . , bI} that

satisfies

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

) ≥ cjrπ(k)

(
vπ(k) −

qπ(j+1)bπ(j+1)

qπ(k)

)
for k, j = 1, . . . I.

Equivalently, an SNE set of bids satisfies

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

) ≥ cj
(
qπ(k)vπ(k) − qπ(j+1)bπ(j+1)

)
for k, j = 1, . . . I.

Since qπ(j)bπ(j) ≥ qπ(j+1)bπ(j+1), an SNE is a Nash equilibrium. We now list some proper-

ties of SNE. The derivations are just a simple extension of those in Varian (2007), which

deals with the case when ri = 1 for all i and which does not consider the quality score (or

qi = 1 for all i).

Fact 1. Nonnegative surplus: ckrπ(k)

(
vπ(k) − qπ(k+1)bπ(k+1)/qπ(k)

) ≥ 0.

Proof: When K < I, we have

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

) ≥ cK+1rπ(k)

(
vπ(k) −

qπ(K+2)bπ(K+2)

qπ(k)

)
= 0

since cK+1 = 0. When K = I, we have

ckrπ(k)

(
vπ(k) −

qπ(k+1)bπ(k+1)

qπ(k)

) ≥ cKrπ(k)

(
vπ(k) −

qπ(K+1)bπ(K+1)

qπ(k)

) ≥ 0

since bπ(K+1) = 0. Q.E.D.

Fact 2. Monotone values: qπ(k)vπ(k) is nonincreasing in k = 1, . . . , K, and qπ(K)vπ(K) ≥
qπ(j)vπ(j) for all j = K + 1, . . . , I.

Proof: The inequality in Definition 2 can be rearranged as

(ck − cj)qπ(k)vπ(k) ≥ ckqπ(k+1)bπ(k+1) − cjqπ(j+1)bπ(j+1).
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By exchanging the role of k and j, we also have

(cj − ck)qπ(j)vπ(j) ≥ cjqπ(j+1)bπ(j+1) − ckqπ(k+1)bπ(k+1).

Adding the inequalities, we get

(ck − cj)
(
qπ(k)vπ(k) − qπ(j)vπ(j)

) ≥ 0.

The result follows. Q.E.D.

Hence, while the bidders are ordered according to adjusted bids, it turns out that adjusted

valuations have the same order as the adjusted bids in SNEs. Observe that the sum of

advertisers’ total payoffs is
∑K

k=1 ckrπ(k)vπ(k). This sum is maximized when bidders are

placed according to the order of rivi’s, that is, when a bidder with the highest rivi is

assigned to position 1, and a bidder with the second highest rivi is assigned to position 2,

and so on. Then, it is easy to see from Fact 2 that this sum is maximized when qi = ri for

all i, or more generally, when (q1, . . . , qI) are set to respect the order of rivi’s.7

Fact 3. Non-monotone payments: ckqπ(k+1)bπ(k+1) is nonincreasing in k = 1, . . . , I, but

the payment ckrπ(k)qπ(k+1)bπ(k+1)/qπ(k) may not be monotone.

Proof: Observe that ck−1qπ(k)bπ(k) ≥ ckqπ(k+1)bπ(k+1) since ck−1 ≥ ck and qπ(k)bπ(k) ≥
qπ(k+1)bπ(k+1). However, it is possible to have

ck−1rπ(k−1)

qπ(k)bπ(k)

qπ(k−1)
< ckrπ(k)

qπ(k+1)bπ(k+1)

qπ(k)

when rπ(k−1)/qπ(k−1) is sufficiently smaller than rπ(k)/qπ(k). Hence, payments may not be

decreasing in k. Q.E.D.

Fact 4. One step solution: If a set of bids satisfies the inequality in Definition 2 for two

adjacent positions, then it satisfies the inequality for all positions. That is, if the inequality

7 Some authors call an outcome that maximizes the sum of advertisers’ total payoffs as an ‘efficient’
outcome. We believe this terminology is somewhat misleading since this outcome does not consider con-
sumers’ payoffs.
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ck
(
qπ(k)vπ(k)− qπ(k+1)bπ(k+1)

) ≥ cj
(
qπ(k)vπ(k)− qπ(j+1)bπ(j+1)

)
holds for each k = 1, . . . , I

and j = k − 1 and k + 1, then Definition 2 holds for all k, j = 1, . . . , I.8

Proof: Fix k = 1, . . . , I. First consider the case when j > k. By hypothesis, we have

inequalities

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

) ≥ ck+1
(
qπ(k)vπ(k) − qπ(k+2)bπ(k+2)

)
,

ck+1
(
qπ(k+1)vπ(k+1) − qπ(k+2)bπ(k+2)

) ≥ ck+2
(
qπ(k+1)vπ(k+1) − qπ(k+3)bπ(k+3)

)
,

:

cj−1
(
qπ(j−1)vπ(j−1) − qπ(j)bπ(j)

) ≥ cj
(
qπ(j−1)vπ(j−1) − qπ(j+1)bπ(j+1)

)
.

Since qπ(k)vπ(k) ≥ qπ(l)vπ(l) for l = k + 1, . . . , j − 1 by Fact 2, as well as c1 > c2 > · · · >

cK > 0 = cK+1 = · · · = cI , the inequalities still hold even when we replace qπ(l)vπ(l)’s with

qπ(k)vπ(k). Canceling out the redundant terms, we get

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

) ≥ cj
(
qπ(k)vπ(k) − qπ(j+1)bπ(j+1)

)
.

The case when j < k is similar, using the other adjacent inequalities. Q.E.D.

Definition 2 of SNE gives the inequalities

ck
(
qπ(k)vπ(k) − qπ(k+1)bπ(k+1)

)≥ ck+1
(
qπ(k)vπ(k) − qπ(k+2)bπ(k+2)

)
and

ck+1
(
qπ(k+1)vπ(k+1) − qπ(k+2)bπ(k+2)

)≥ ck
(
qπ(k+1)vπ(k+1) − qπ(k+1)bπ(k+1)

)
,

which can be combined to get

(ck − ck+1)qπ(k+1)vπ(k+1) + ck+1qπ(k+2)bπ(k+2) ≤ ckqπ(k+1)bπ(k+1)

≤(ck − ck+1)qπ(k)vπ(k) + ck+1qπ(k+2)bπ(k+2).

Thus, each bidder’s ckqπ(k+1)bπ(k+1) is bounded below and above. We can express the

upper and lower boundary cases in the previous inequalities recursively as

ckqπ(k+1)b
U
π(k+1) = (ck − ck+1)qπ(k)vπ(k) + ck+1qπ(k+2)b

U
π(k+2) and

ckqπ(k+1)b
L
π(k+1) = (ck − ck+1)qπ(k+1)vπ(k+1) + ck+1qπ(k+2)b

L
π(k+2),

8 Needless to say, there exists only one relevant adjacent inequality when k = 1 or k = I.
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from which we have

ckqπ(k+1)b
U
π(k+1) =

K∑

j=k

(cj − cj+1)qπ(j)vπ(j),

ckqπ(k+1)b
L
π(k+1) =

K∑

j=k

(cj − cj+1)qπ(j+1)vπ(j+1).

2.2. Optimal quality scores: full extraction of the surplus

The main question we ask in this paper is how to set the quality scores (q1, . . . , qI)

to maximize the auctioneer’s revenue. That is, we take the quality score as a strategic

decision variable. The lower bound of the auctioneer’s revenue is given by

K∑

k=1

rπ(k)

qπ(k)
ckqπ(k+1)b

L
π(k+1) =

K∑

k=1

rπ(k)

qπ(k)

K∑

j=k

(cj − cj+1)qπ(j+1)vπ(j+1)

=
K∑

k=1

(ck − ck+1)qπ(k+1)vπ(k+1)

( k∑

j=1

rπ(j)

qπ(j)

)

and the upper bound can be similarly expressed. We will henceforth work with the lower

bound. This bound is prominent in that it coincides with the Vickrey payment when the

quality score qi is set to the click-through rate ri. Edelman et al. (2007) give special

attention to the lower bound in their Theorem 1. Varian (2007) also argues that the lower

bound is the most plausible outcome. Moreover, as we show in Proposition 2 below, the

optimal revenue even with the lower bound SNE extracts all the bidders’ surplus, hence

all the other SNEs a fortiori achieve the full extraction of surplus.

From now on, we will let r1v1 ≥ r2v2 ≥ · · · ≥ rIvI without loss of generality. That is,

we rename the bidders in the order of rivi’s. We have:

Proposition 1. If the quality scores (q1, . . . , qI) maximize the lower bound of the auction-

eer’s revenue, then q1v1 ≥ q2v2 ≥ · · · ≥ qKvK and qKvK ≥ qjvj for all j = K + 1, . . . , I.

Proof: Fix the quality scores (q1, . . . , qI), and let π : I → I be the order of bidders induced

by these quality scores. That is, qπ(1)vπ(1) ≥ · · · ≥ qπ(I)vπ(I). We prove by contradiction,
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so suppose that either (i) there exists k = 1, . . . , K − 1 such that i = π(k), j = π(k + 1),

j < i and qivi > qjvj , or (ii) no such k exists but qivi > qjvj for some j = 1, . . . ,K and

i = K + 1, . . . , I.

Consider case (i) first. We will show that we can choose another set of quality scores,

which results in an increase of the auctioneer’s revenue. With the original quality scores,

we have

qπ(1)vπ(1) ≥ · · · ≥ qπ(k−1)vπ(k−1) ≥ qivi > qjvj ≥ qπ(k+2)vπ(k+2) ≥ · · · ≥ qπ(I)vπ(I). (1)

Now construct new quality scores by decreasing qπ(1), . . . , qπ(k−1) and qi so that

q0
π(1)vπ(1) = q0

π(2)vπ(2) = · · · = q0
π(k−1)vπ(k−1) = q0

i vi = qjvj , (2)

i.e. decrease the quality scores from 1 to k so that the adjusted valuations are equal to

qjvj = qπ(k+1)vπ(k+1), while leaving qπ(k+1), . . . , qπ(I) intact. With the new quality scores,

we have

q0
π(1)vπ(1) ≥ · · · ≥ q0

π(k−1)vπ(k−1) ≥ qjvj ≥ q0
i vi ≥ qπ(k+2)vπ(k+2) ≥ · · · ≥ qπ(I)vπ(I).

Note well that we choose the order of adjusted valuations in a way to switch only the

positions of i and j, though all the adjusted valuations from 1 to k + 1 have the same

value of qjvj by construction. This is an innocuous convention only to avoid unnecessary

complications: We can alternatively choose q0
π(l)vπ(l) = qjvj + ε/l for l = 1, . . . , k − 1,

q0
j vj = qjvj + ε/k and q0

i vi = qjvj and derive the same conclusion.

The lower bound of the auctioneer’s revenue with the original (q1, . . . , qI) is
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R =(c1 − c2)qπ(2)vπ(2)

rπ(1)

qπ(1)
+ (c2 − c3)qπ(3)vπ(3)

(rπ(1)

qπ(1)
+

rπ(2)

qπ(2)

)

+ · · ·

+ (ck−2 − ck−1)qπ(k−1)vπ(k−1)

(rπ(1)

qπ(1)
+ · · ·+ rπ(k−2)

qπ(k−2)

)

+ (ck−1 − ck)qivi

(rπ(1)

qπ(1)
+ · · ·+ rπ(k−1)

qπ(k−1)

)

+ (ck − ck+1)qjvj

(rπ(1)

qπ(1)
+ · · ·+ rπ(k)

qπ(k)

)

+ (ck+1 − ck+2)qπ(k+2)vπ(k+2)

(rπ(1)

qπ(1)
+ · · ·+ rπ(k+1)

qπ(k+1)

)

+ · · ·

+ (cK − cK+1)qπ(K+1)vπ(K+1)

(rπ(1)

qπ(1)
+ · · ·+ rπ(K)

qπ(K)

)
.

The auctioneer’s revenue with the new quality scores is

R0 =(c1 − c2)q0
π(2)vπ(2)

rπ(1)

q0
π(1)

+ (c2 − c3)q0
π(3)vπ(3)

(rπ(1)

q0
π(1)

+
rπ(2)

q0
π(2)

)

+ · · ·

+ (ck−2 − ck−1)q0
π(k−1)vπ(k−1)

(rπ(1)

q0
π(1)

+ · · ·+ rπ(k−2)

q0
π(k−2)

)

+ (ck−1 − ck)qjvj

(rπ(1)

q0
π(1)

+ · · ·+ rπ(k−1)

q0
π(k−1)

)

+ (ck − ck+1)q0
i vi

(rπ(1)

q0
π(1)

+ · · ·+ rπ(k−1)

q0
π(k−1)

+
rj

qj

)

+ (ck+1 − ck+2)qπ(k+2)vπ(k+2)

(rπ(1)

q0
π(1)

+ · · ·+ rj

qj
+

ri

q0
i

)

+ · · ·
+(cK − cK+1)qπ(K+1)vπ(K+1)

(rπ(1)

q0
π(1)

+ · · ·+ rj

qj
+

ri

q0
i

+ · · ·+ rπ(K)

qπ(K)

)
.

The first k − 2 terms of R0 are not less than the corresponding terms in R since, for

l = 1, . . . , k − 2,

(cl − cl+1)q0
π(l+1)vπ(l+1)

(rπ(1)

q0
π(1)

+ · · ·+ rπ(l)

q0
π(l)

)

=(cl − cl+1)(rπ(1)vπ(1) + · · ·+ rπ(l)vπ(l)) by (2)

≥(cl − cl+1)qπ(l+1)vπ(l+1)

(rπ(1)

qπ(1)
+ · · ·+ rπ(l)

qπ(l)

)
. by (1)
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Likewise, the (k − 1)-th term of R0 is not less than the corresponding terms in R since

(ck−1 − ck)qjvj

(rπ(1)

q0
π(1)

+ · · ·+ rπ(k−1)

q0
π(k−1)

)

=(ck−1 − ck)(rπ(1)vπ(1) + · · ·+ rπ(k−1)vπ(k−1))

≥(ck−1 − ck)qivi

(rπ(1)

qπ(1)
+ · · ·+ rπ(k−1)

qπ(k−1)

)
.

Hence,

R0 −R ≥(ck − ck+1)qjvj

(k−1∑

l=1

rπ(l)

q0
π(l)

−
k−1∑

l=1

rπ(l)

qπ(l)
+

rj

qj
− ri

qi

)

+ (ck+1 − ck+2)qπ(k+2)vπ(k+2)

(k−1∑

l=1

rπ(l)

q0
π(l)

−
k−1∑

l=1

rπ(l)

qπ(l)
+

ri

q0
i

− ri

qi

)

+ · · ·

+ (cK − cK+1)qπ(K+1)vπ(K+1)

(k−1∑

l=1

rπ(l)

q0
π(l)

−
k−1∑

l=1

rπ(l)

qπ(l)
+

ri

q0
i

− ri

qi

)

>0.

since (i) q0
π(l) < qπ(l) for l = 1, . . . , k − 1 as well as q0

i < qi, and (ii) rj

qj
> ri

qi
which follows

from the facts that rjvj ≥ rivi but qivi > qjvj .

Consider case (ii) next. There must exist j = π(k) with j ≤ K < k, and qivi > qjvj for

i > K. We construct new quality scores by increasing qj so that q0
j vj = qπ(K)vπ(K), while

leaving other quality scores intact. In these new quality scores, the only change is that

bidder j has moved up to the K-th position while pushing other bidders in {π(K), . . . , π(I)}
down by one rank. Hence, the change in the auctioneer’s revenue R0 −R is9

(cK − cK+1)
(
qπ(K)vπ(K)

(K−1∑

l=1

rπ(l)

qπ(l)
+

rj

q0
j

)− qπ(K+1)vπ(K+1)

(K−1∑

l=1

rπ(l)

qπ(l)
+

rπ(K)

qπ(K)

))

≥(cK − cK+1)(rjvj − rπ(K)vπ(K)) > 0

since it is safe to assume that rjvj > rπ(K)vπ(K). (Otherwise, i.e., if rjvj = rπ(K)vπ(K),

then we are back to case (i) for the new quality scores, possibly after the recursive switching

9 Note that the first inequality follows from replacing qπ(K+1)vπ(K+1) with qπ(K)vπ(K).
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of adjacent positions starting from j back to i if equalities of adjusted valuations remain.)

Q.E.D.

The following example illustrates the algorithm in the proof.

Example 1. There are three positions with c1 = 3, c2 = 2, and c3 = 1, and three bidders

with v1 = 3, v2 = 2, v3 = 1, and r1 = r2 = r3 = 1. Suppose that q2v2 > q3v3 > q1v1, say

q1 = 1, q2 = 3, q3 = 4. Hence, π(1) = 2, π(2) = 3, and π(3) = 1. The auctioneer’s revenue

is

R = (c1 − c2)q3v3
1
q2

+ (c2 − c3)q1v1(
1
q2

+
1
q3

) =
4
3

+ 3(
1
3

+
1
4
) =

37
12

.

Now decrease q2 and q3 so that q0
2 = 3

2 and q0
3 = 3. This gives q0

2v2 ≥ q1v1 ≥ q0
3v3. The

auctioneer’s revenue becomes

R0 = (c1 − c2)q1v1
1
q0
2

+ (c2 − c3)q0
3v3(

1
q0
2

+
1
q1

) = 2 + 3(
2
3

+ 1) = 7.

Proposition 1 shows that an outcome that maximizes the auctioneer’s revenue respects

the order of the CTR-adjusted valuations rivi’s. So, in a revenue-maximizing outcome,

the bidder with the highest CTR-adjusted valuation is assigned to position 1, the bidder

with the second highest CTR-adjusted valuation is assigned to position 2, and so on.10

Recall that this outcome also maximizes the sum of advertisers’ total payoffs as we saw

after Fact 2.

We want to note that the auctioneer’s revenue in reality depends not only on the CTR

but also on many other factors including the relevance of the keyword and the landing page

quality. Since the current paper abstracts away from real-world complications and focuses

only on the CTR as the revenue-relevant variable, Proposition 1 should be understood in

a way that the revenue-maximizing outcome respects the order of the adjusted valuations

that incorporate all revenue-relevant variables.

10 To put it precisely, let φ : I → I be the permutation of bidders so that φ(i) is the bidder with the
i-th highest CTR-adjusted valuation. That is, rφ(1)vφ(1) ≥ · · · ≥ rφ(I)vφ(I). Proposition 1 shows that the

assignment order π : I → I induced by (q1, . . . , qI) is identical to φ in a revenue-maximizing outcome, up
to revenue-irrelevant equivalent classes.
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We next show that the auctioneer can, in fact, extract all the advertisers’ surplus

by setting quality scores optimally when the number of bidders exceeds the number of

positions.

Proposition 2. (Full extraction of advertisers’ surplus) Assume K < I. The optimal

quality scores (q∗1 , . . . , q∗I ) that maximize the lower bound of the auctioneer’s revenue satisfy

q∗1v1 = q∗2v2 = · · · = q∗K+1vK+1 ≥ q∗j vj for all j = K + 2, . . . , I

and the auctioneers’ optimal revenue is equal to the maximal sum of advertisers’ total

payoffs,
∑K

k=1 ckrkvk.11

Proof: The revenue from position K is rK

qK
(cK − cK+1)qK+1vK+1. Given qK , it is optimal

to raise qK+1 as high as possible. By the restriction qKvK ≥ qK+1vK+1 from Proposition

1, we have qK+1 = qKvK/vK+1 and the corresponding revenue is cKrKvK since cK+1 = 0.

By backward induction, the revenue from position k = 1, . . . , K is

rk

qk

( K∑

j=k

(cj − cj+1)qj+1vj+1

)
=

rk

qk
(ck − cK+1)qk+1vk+1.

Given qk, it is optimal to choose qk+1 = qkvk/vk+1 by Proposition 1. The resulting revenue

for position k is ckrkvk. On the other hand, the quality scores q∗j for j = K +2, . . . , I need

only to satisfy the restrictions given by Proposition 1 since bidders without positions do

not pay. Q.E.D.

Hence, the auctioneer can extract all the advertisers’ surplus in the lower bound SNE.

Since bidders enjoy a nonnegative surplus in any SNE by Fact 1, this proposition implies

that this is also the best outcome for the auctioneer in any SNE.

11 One obvious choice of the quality scores is to set q∗1 = 1, q∗k = v1/vk for k = 2, . . . , K + 1, and

q∗j ≤ v1/vj for j = K + 2, . . . , I.
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What is the reason behind this result? As for the equilibrium bids and payments, we

have:

Corollary 3. Assume K < I. With the optimal quality scores (q∗1 , . . . , q∗I ), we have

bk = vk for i = 2, . . . , K +1, and the payment per click for bidder k is vk for k = 1, . . . , K.

Proof: Easy to obtain from Proposition 2 and Definition 2. Q.E.D.

The optimal quality scores effectively set all the bidders’ valuations equal to the high-

est valuation, which induces intense bidding competition. In the optimal auction design

under incomplete information, Myerson (1981) has shown that the auctioneer can increase

revenue by giving bid preferences to weak bidders whose expected willingness to pay is

lower.12 Observe that optimal quality scores work similarly as bid preferences in our

complete information setting of the generalized second-price auction. Observe also that

optimal quality scores not only increase the auctioneer’s revenue but in fact extract all the

advertisers’ surplus.13

Notwithstanding the full extraction result, it should be noted that the short-term

incentive of exploitation may be checked by the long-term incentive of market cultivation.

Simply put, sponsored search auctions cannot survive in the end unless advertisers find

their surplus satisfactory. Hence, the advertising intermediaries such as Google and Yahoo!

may wish to guarantee normal profits to the advertisers. The following proposition shows

that it is possible to extract any portion of advertisers’ surplus.

Proposition 4. Assume K < I. For any α ∈ [0, 1], the auctioneer can choose the quality

scores so that, for all k = 1, · · · , K, the revenue from position k is exactly 100α percent of

the total advertiser’s surplus ckrkvk who occupies that position.

12 Liu and Chen (2006) exploit this insight in the context of sponsored search auctions. They consider
the first-price auction format and only the case of a single position, which are at wide variance with
actual practice. See other related papers in their reference, too. On the other hand, Lahaie and Pennock
(2007) start discussing quality scores under complete information setting. They move on to the incomplete
information setting and, with a specific form of qi = rα

i for the quality score, show by simulation that

higher correlation between ri and vi leads to a smaller optimal α.

13 We conjecture that full extraction may not be feasible under incomplete information unless valuations
are correlated across advertisers in the spirit of Crémer and McLean (1988).
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Proof: The revenue from position K is rK

qK
(cK − cK+1)qK+1vK+1. By choosing qK+1 =

αqKvK

vK+1
, that is, by setting qK+1vK+1 = αqKvK , it becomes αcKrKvK . Next, the revenue

from position K − 1 is

rK−1

qK−1
[(cK−1 − cK)qkvK + (cK − cK+1)qK+1vK+1]

=
rK−1

qK−1
[(cK−1 − cK)qkvK + α(cK − cK+1)]qKvK =

rK−1

qK−1
[cK−1 − (1− α)cK ]qkvK .

By choosing qK = αcK−1qK−1vK−1
[cK−1−(1−α)cK ]vK

, that is, by setting [cK−1 − (1 − α)cK ]qKvK =

αcK−1qK−1vK−1, it becomes αcK−1rK−1vK−1. By backward induction, the revenue from

position k = 1, . . . ,K becomes αckrkvk by choosing

qk+1 =
αckqkvk

[ck − (1− α)ck+1]vk+1
,

that is, by setting [ck − (1 − α)ck+1]qk+1vk+1 = αckqkvk. Note well that these quality

scores preserve the order of CTR-adjusted valuations so that bidder k occupies position k

for all k = 1, · · · ,K. Q.E.D.

We finally mention that full extraction does not occur when K = I since there cannot

be enough competition for positions. A straightforward derivation along the lines of the

proof of Proposition 2 shows the following: The revenue from position K is zero, and

generally the revenue from position k is (ck − cK)rkvk. Bidder k’s surplus is cKrkvk =

ckrkvk − (ck − cK)rkvk > 0 for k = 1, . . . , K.

3 Discussion

We have shown that the quality scores can be optimally chosen to extract all (or any

portion) of the advertisers’ surplus. This proposition was established in the static model

of complete information. As we have discussed before Definition 1, this modeling choice is

a reasonable first approximation since all relevant information about advertisers are likely

to be learned via frequent interactions and experimentations. Nevertheless, the complete

information assumption may be problematic if it is hard to identify which of its equilibrium
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predictions are meaningful approximations. Fortunately in this regard, we have established

that all equilibria of the complete information game leads to the same conclusion of full

surplus extraction.

One may argue that the full extraction result is not surprising or even trivial since,

under complete information setting, the advertising intermediary can charge each adver-

tiser’s true valuation. Observe however that the advertising intermediary is prevented from

directly charging true valuations, nor bidders pay their own bids, under the trading insti-

tution of the generalized second price auction. To put it differently, suppose an advertising

intermediary gets to know advertisers’ true valuations, but it cannot directly charge these

valuations due to the trading rule established in the business. What we have shown is that

the quality score may be used as an effective instrument to charge true valuations in an

auction that appears to set lower prices than bidders’ stated valuations.
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