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a b s t r a c t

We characterize the structure of optimal assignment rules when both allocative inefficiency and
expenditure inefficiency (e.g., rent-seeking) are present. We find that the optimal structure critically
depends on how the hazard rate of the value distribution behaves, and that it is often optimal to use
probabilistic assignment rules so that the winner of the object is not always the one with the highest
valuation. We also find that the inefficiency of the optimal assignment rule decreases as the variability of
the value distribution increases.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

People spend valuable resources to obtainwhat they desire, and
this expenditure is not always efficiently invested. Education is
probably one of the most famous examples after Spence (1973):
over-investments or even completely wasteful investments in
signaling occur to obtain diplomas. Rent-seeking is another famous
example after Tullock (1980): rents are dissipated due to wasteful
behaviors. In these situations, two sources of inefficiency may
occur. The first is inefficiency from the (at least partial) waste of
valuable resources. The second is allocative inefficiency that may
result if the objects of interest are not assigned to those who value
them most or who can utilize them most productively.

A simple example will help to clarify the main theme of this
paper.1 There is one object to be assigned to either one of two
players. Assume first that both players attribute a value of one
dollar to the object, and that this fact is common knowledge. If
the object is assigned to the player who throws more pennies into
a big pond,2 each player will waste 50 cents in expectation. The
total inefficiency is one dollar, and the rent is fully dissipated. On

∗ Tel.: +82 2 3290 2222; fax: +82 2 928 4948.
E-mail address: kiho@korea.ac.kr.
URL: http://econ.korea.ac.kr/∼kiho.

1 Though this example postulates complete information for illustrative purpose,
this paper in fact studies the incomplete information setting.
2 This is an all-pay auction under complete information, for which F(x) = x for

x ∈ [0, 1] is the cumulative distribution function of the unique equilibrium strategy.

the other hand, if the object is assigned randomly, no inefficiency
results. Hence, random assignment performs better. Assume next
that one of the players attributes a value of one dollar, while the
other attributes zero to the object. Players know their respective
valuations, but others do not know whose valuation is one. Then,
the player with a low valuation throws no penny obviously, while
the player with a high valuation throws one penny to get the
object. This leads to (almost) no inefficiency. On the other hand,
if the object is assigned randomly then the player with zero value
will get the object with probability 0.5, resulting in an allocative
inefficiency of 50 cents. In this case, the money-throwing method
performs better.

This example shows that, faced with two kinds of inefficiency,
allocative inefficiency and expenditure inefficiency, uncertainty
regarding true valuations matters for the relative performance of
alternative assignment rules. There exists no value uncertainty in
the first case, thus no inefficiency from mis-allocation occurs. All
weneed to take care is the inefficiency fromwasteful expenditures.
Value uncertainty is significant in the second case, and we have to
consider both expenditure inefficiency and allocative inefficiency.

We approach this problem from a mechanism design perspec-
tive under incomplete information. Hence, we assume that players
have private information regarding their valuations for the object,
and look for optimal assignment rules that minimize the sum of
allocative inefficiency and expenditure inefficiency. In particular,
we focus on the rank-order assignment rules that respect the or-
der but not the exact level of players’ expenditures. The rank-order
rule, in which only relative (as opposed to absolute) performance
matters, is widely used in practice: elections, sports competitions,
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promotion in organizations, and classroom grading are just a few
examples. It is a simple scheme to implement, especially when in-
dividual performance is hard tomeasure on a cardinal scale. More-
over, as the works including Lazear and Rosen (1981) and Green
and Stokey (1983) show, it may in fact be an optimal arrangement
for many economic situations.3

We find that the optimal structure of assignment rules depends
critically on how the hazard rate of the value distribution behaves,
and that it is often optimal to use probabilistic assignment
rules in which the winner of the object is not always the one
with the highest valuation. We also find that the inefficiency of
the optimal assignment rule decreases as the variability of the
value distribution increases. These results are obtained in a clear
and straightforward fashion by applying the theory of stochastic
orders. This theory of stochastic orders among differences of order
statistics, pioneered by Barlow and Proschan (1966), was recently
introduced to various models in economics by Moldovanu et al.
(2007, 2008) and Hoppe et al. (2009). In particular, the present
paper is technically similar to the last paper that studies the
assortative two-sided matching with costly signals to see how the
change in either side of the matching affects the relevant variables
such as the welfare and the signaling efforts. In comparison, we
study the optimal choice of assignment rules depending on the
distribution of one population.4

The problem of this paper may also be analyzed by the optimal
mechanism design approach initiated by Myerson (1981). Then,
it is possible to consider more general assignment rules, beyond
rank-order assignment rules. Since this approach is quite well-
established in the literature, however, we relegate the discussion
on the general mechanism design approach to the Appendix. The
analysis in the Appendix shows that our results (in particular,
Propositions 2 and 3) continue to hold even when we consider
more general assignment rules. Moreover, the theory of stochastic
orders enables us to obtain a meaningful comparative static
result with respect to the changes in the value distribution
(Proposition 4).

Hartline and Roughgarden (2008), Chakravarty and Kaplan
(2009) and Condorelli (2011) adopted the optimal mechanism
design approach to study similar problems. The last paper, in
particular, derives similar results to Proposition 2. Compared to
Condorelli (2011), the current paper encompasses the case when
only parts of the expenditure are counted as inefficiency as well as
establishes a result as to how the variability of the value distribu-
tion affects efficiency. On the other hand, Condorelli discusses het-
erogeneous objects case and then the implementation via priority
lists and queues. Also related are Suen (1989), Taylor et al. (2003),
and Koh et al. (2006) that compare thewaiting-line auction and the
lottery for specific distributions.5

2. Main results

2.1. The model

We consider a situation where one object is to be assigned to
one of the players in N = {1, . . . , n}.6 The object may be tangible

3 Frankel (2010) recently shows that the rank-order rule may be an optimal
mechanism under certain circumstances if the worst-case optimality criterion
instead of Bayesian optimality criterion is considered.
4 In a sense, this paper takes one of the two sides in Hoppe et al. (2009) as a

decision variable and chooses optimally according to the changes in the remaining
side.
5 The main analysis of Taylor et al. (2003) deals only with the Beta distribution

numerically, while Koh et al. (2006) consider 4 specific (power, Weibull, logistic,
and Beta) distributions.
6 It is a straightforward matter to extend the analysis to the case of multiple

homogeneous objects. See the discussion at the end of this section.

such as a product or a specific position; or it may be intangible
such as a government contract, political favor, or social status. It
may also be a mating partner in the case of biological contests.
Each player i ∈ N has a valuation vi for the object. We postulate
incomplete information so that player i knows his valuation vi,
while others only know its distribution. We assume that each
player’s valuation is drawn independently from the interval [v, v]

with 0 ≤ v ≤ v ≤ ∞ according to a common distribution F .7
We assume further that F admits a continuous density function f
which is strictly positive on the interval [v, v].

Player i exerts an observable expenditure xi ∈ R+ to win
the object. This expenditure is assumed to be an unconditional
commitment of resources.8 That is, each player exerts xi whether or
not he actually gets the object. This expendituremaybe amonetary
bid as in all-pay auctions, an effort level in contests, time in a
waiting line, or a costly investment as in a signaling context or in a
biological context.

A mechanism is an assignment rule p = (p1, . . . , pn) that
depends on the expenditure vector x = (x1, . . . , xn), where pi
is the probability that player i gets the object. To be feasible,
the assignment rule must satisfy pi(x) ≥ 0 for all i ∈ N and∑n

j=1 pj(x) = 1, for all x ∈ Rn
+
. Player i’s payoff is ui ≡ pivi − xi

when his valuation is vi and he exerts an expenditure of xi. We
want to note that the linear disutility of expenditure is not as
restricted as it appears. We may alternatively introduce a general
cost function c(xi, vi) so that ui ≡ pivi − c(xi, vi), and assume
that c(xi, vi) is strictly increasing in xi. This function can be either
convex or concave in xi as well as either increasing or decreasing
in vi. It is an easy and interesting exercise to observe that virtually
the same results hold in the following if we replace xi with c(xi, vi),
in particular, in the expenditure inefficiency and the net efficiency
defined below.

Each player chooses his expenditure to maximize the expected
payoff, given other players’ expenditures and the assignment rule.
Hence, player j’s strategy in the mechanism is a function ej :

[v, v] → R+ that maps his valuation to the expenditure level.
Given others’ strategies, player i’s problem with valuation vi is

max
xi

Ev−i [pi(xi, e−i(v−i))vi − xi].

In the above expression, we follow the convention that the sub-
script−i pertains to players other than player i. For example, v−i =

(v1, v2, . . . , vi−1, vi+1, . . . , vn).
It will be convenient to work with order statistics. Hence, let

v1:n ≥ v2:n ≥ · · · ≥ vn:n be the order statistics of v1, . . . , vn.
Note that vk:n is the k-th highest among n valuations drawn from
the common distribution F . The distribution and the density of vk:n
are denoted by Fk:n and fk:n, respectively.9 We will also deal with
players’ valuations except player i’s, so we can similarly have the
order statistic vk:n−1 and the corresponding functions Fk:n−1 and
fk:n−1 of the k-th highest among (n − 1) valuations.

As discussed in the introduction, we restrict our attention to
the class of assignment rules that respect the order, but not the
amounts of expenditure. That is, given a vector (x1, . . . , xn) of
players’ expenditures, a probability π1 of win is given to the player
with the highest expenditure x1:n, a probability π2 is given to the
player with the second highest expenditure x2:n, and so on.10 Let

7 The Appendix contains an analysis of the asymmetric player case.
8 As far as the author is aware, Amman and Leininger (1995, 1996) were the

first to make the distinction between unconditional commitment and conditional
commitment.
9 Fk:n(z) =

∑k−1
r=0

 n
r


F(z)n−r

[1 − F(z)]r and fk:n(z) =
n!

(k−1)!(n−k)! F(z)n−k
[1 −

F(z)]k−1f (z).
10 Ties can be dealt with by combining the relevant probabilities and assigning
equal chances.
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us call these assignment rules the rank-order assignment rules. We
will henceforth denote amechanism by the rank-order assignment
rule (π1, . . . , πn), withπk being the probability that a playerwhose
expenditure is the k-th highest wins the object.

2.2. Analysis

Since players are symmetric, we begin with a heuristic deriva-
tion of symmetric equilibrium strategies. Suppose that players
other than i follow a symmetric, increasing and differentiable equi-
librium strategy e(·). First, it is straightforward to see that player i
will never optimally exert an expenditure xi > e(v). Second, it is
also easy to see that a playerwith valuation v will optimally choose
an expenditure of zero. Then player i’s expected payoff when his
valuation is vi and he exerts an expenditure of e(wi) is

Ui(vi; wi) = vi

π1F1:n−1(wi) + π2[F2:n−1(wi) − F1:n−1(wi)]

+ · · · + πn−1[Fn−1:n−1(wi) − Fn−2:n−1(wi)]

+ πn[1 − Fn−1:n−1(wi)]


− e(wi)

= vi


n−1−
k=1

(πk − πk+1)Fk:n−1(wi) + πn


− e(wi).

In words, if player i has a true valuation of vi but exerts an
expenditure as if his valuation is wi, he will get the object with
probabilityπ1 whenhis expenditure is the highest, i.e., v1:n−1 ≤ wi,
he will get the object with probability π2 when his expenditure is
the second highest, i.e., v2:n−1 ≤ wi < v1:n−1, . . . , and he will
get the object with probability πn when his expenditure exceeds
no other players’ expenditures, i.e., w < vn−1:n−1. Note well that
Fk:n−1(wi) − Fk−1:n−1(wi) is the probability that wi lies between
the (k − 1)-th and the k-th highest among (n − 1) other players’
valuations, i.e., Prob[vk:n−1 ≤ wi < vk−1:n−1].

The first-order condition for the payoff maximization with
respect to wi is

vi

n−1−
k=1

(πk − πk+1)fk:n−1(wi) = e′(wi).

Since wi = vi at a symmetric equilibrium, we have the differential
equation

e′(vi) = vi

n−1−
k=1

(πk − πk+1)fk:n−1(vi),

from which we get the equilibrium strategy

e(vi) =

n−1−
k=1

(πk − πk+1)

∫ vi

v

w dFk:n−1(w).

While this is only a heuristic derivation, the following proposition
shows that this is indeed an equilibrium.

Proposition 1. Suppose that the rank-order assignment rule (π1, . . . ,
πn) satisfiesπ1 ≥ · · · ≥ πn. Then, the symmetric equilibrium strategy
of the mechanism is

e(vi) =

n−1−
k=1

(πk − πk+1)

∫ vi

v

w dFk:n−1(w)

for all i ∈ N and vi ∈ [v, v].

Proof. If π1 = π2 = · · · = πn, then the equilibrium strategy is
e(vi) = 0 for all vi ∈ [v, v]. Now, ifπ1 ≥ · · · ≥ πn with at least one
strict inequality, then e(vi) is strictly increasing and continuous.
We next show that Ui(vi; wi) is maximized by choosing wi = vi.
We have

Ui(vi; vi) − Ui(vi; wi)

=

n−1−
k=1

(πk − πk+1)


vi[Fk:n−1(vi) − Fk:n−1(wi)]

−

∫ vi

wi

w dFk:n−1(w)



=

n−1−
k=1

(πk − πk+1)

∫ vi

wi

Fk:n−1(w) dw − (vi − wi)Fk:n−1(wi)


,

where the second equality follows from integration by parts.
Observe that the last term is always nonnegative regardless of
whether wi ≤ vi or wi ≥ vi. �

Wewill henceforth assume that the rank-order assignment rule
satisfiesmonotonicity, i.e.,π1 ≥ · · · ≥ πn.Wenote that this iswith
no loss of generality since the general mechanism design approach
in the Appendix shows that monotonicity must be satisfied in any
incentive compatible assignment rule.11 The assignment rule is
called the winner-take-all assignment when π1 = 1 and πk = 0
for k = 2, . . . , n. It is called the random assignment when π1 =

· · · = πn =
1
n .

Player i’s expected expenditure is

E[e(vi)] =

∫ v

v

n−1−
k=1

(πk − πk+1)

∫ vi

v

w dFk:n−1(w) dF(vi)

=

n−1−
k=1

(πk − πk+1)

∫ v

v

w dFk:n−1(w)

−
n − k
n

∫ v

v

w dFk:n(w)


=

1
n

n−1−
k=1

(πk − πk+1){nµk:n−1 − (n − k)µk:n}

=
1
n

n−1−
k=1

(πk − πk+1)kµk+1:n

where µk:n is the expected value of the k-th highest among
n valuations, and the last equality follows from a well-known
recurrence relation.12 Hence, the total expenditure is nE[e(vi)] =∑n−1

k=1(πk − πk+1)kµk+1:n.
We are interested in designing an optimal mechanism when

the (excess) expenditure is viewed as sociallywasteful investment.
Thus, we can imagine a social welfare loss function that is
increasing in the total expenditure

∑n
i=1 xi. It may be identically

zero if the expenditures are purely monetary transfers, as in the
case of all-pay auctions. It may be equal to the total expenditure, as
in the case of wasteful rent-seeking behavior. Generally, however,
real resources are expended up to more than the desirable level
as we know well from the signaling literature or the contest
literature. We will call the social welfare loss due to wasteful
expenditure as expenditure inefficiency, to distinguish it from the
more conventional inefficiency due tomis-allocation, i.e., allocative
inefficiency. We take expenditure inefficiency as a fraction of the
total expenditure, so that it is

α

n−1−
k=1

(πk − πk+1)kµk+1:n

11 We also note that, as the analysis in the Appendix implies, there cannot exist
asymmetric equilibria thatmay achieve higher net efficiency (to be defined shortly)
when players are symmetric. Therefore, it is with no loss of generality to restrict our
attention to the symmetric equilibrium.
12 See David (1981) for a good introduction to order statistics.
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with 0 ≤ α ≤ 1. Note that expenditure inefficiency is non-
negative for any assignment rule, and is zero when α = 0 or the
assignment rule is the random assignment.

We now turn to allocative inefficiency. Given the increasing
equilibrium expenditure function, the allocative performance of an
assignment rule (π1, . . . , πn) is

E[π1v1:n + · · · + πnvn:n].

Observe that the maximum allocative efficiency occurs when the
object is always assigned to the player with the highest valuation,
which is E[v1:n]. Hence, allocative inefficiency is

µ1:n −

n−
k=1

πkµk:n.

There is no allocative inefficiency under the winner-take-all
assignment. On the other hand, allocative inefficiency is µ1:n −

(1/n)
∑n

k=1 µk:n = µ1:n − µ1:1 under the random assignment.13
Observe also that allocative inefficiency decreases monotonically
as more mass is put on higher πk’s, since µk:n > µj:n for k < j.
We also note that allocative inefficiency is non-negative for any
assignment rule since µ1:n ≥ · · · ≥ µn:n.

The net efficiency of an assignment rule may be defined as its
allocative performance net of expenditure inefficiency. This is

n−
k=1

πkµk:n − α

n−1−
k=1

(πk − πk+1)kµk+1:n

=

n−
k=1

[πk − α(k − 1)(πk−1 − πk)]µk:n

=

n−
k=1

[αk(µk:n − µk+1:n) + (1 − α)µk:n]πk (1)

with the convention thatµn+1:n = 0.When α = 1, net inefficiency
becomes

n−
k=1

[kπk − (k − 1)πk−1]µk:n =

n−
k=1

k(µk:n − µk+1:n)πk. (2)

A mechanism that maximizes net efficiency is called an optimal
assignment rule.

We are ready to show our main results. Before doing so, we
collect some useful facts from the theory of stochastic orders: (i) A
random variable X or its distribution F is said to be IFR if the hazard
rate (i.e., the failure rate) F ′(x)/(1 − F(x)) is increasing, and DFR
if the hazard rate is decreasing. Equivalently, it is IFR (DFR) if the
survival rate 1− F(x) is log-concave (log-convex). Examples of IFR
distributions are exponential, uniform, normal, logistic, power (for
c ≥ 1), Weibull (for c ≥ 1), and gamma (for c ≥ 1), while those
of DFR distributions are exponential, Weibull (for 0 < c ≤ 1),
gamma (for 0 < c ≤ 1), and Pareto.14,15 (ii) A random variable X
with distribution F is said to be stochastically smaller than another
random variable Y with distribution G if F(z) ≥ G(z) for all z.
This relationship is denoted by X ≤st Y . It is often said that Y (first-
order) stochastically dominates X . (iii) For the normalized spacing
k(Xk:n − Xk+1:n), the following lemma is useful for us.

Lemma 1. Let X1, X2, . . . , Xn be independent and identically dis-
tributed IFR (DFR) random variables. Then

13 Note that E[v1:n + · · · + vn:n] = E[v1 + · · · + vn] = nE[v1].
14 Here, c is the shape parameter. We discuss some of these distributions in more
detail below.
15 These are well-known standard facts. For an interesting discussion of log-
concavity and log-convexity in the economics literature, see Bagnoli and Bergstrom
(2005) and the references therein.

k(Xk:n − Xk+1:n) ≥st(≤st)(k − 1)(Xk−1:n − Xk:n)

for k = 2, . . . , n − 1.

This lemma is quite well-known in the theory of stochastic
orders.16 Observe that the expression (1) for net efficiency is a
linear function of πk’s with coefficients [αk(µk:n − µk+1:n) +

(1 − α)µk:n], where k(µk:n − µk+1:n) is the expected value of the
normalized spacing.

It is obvious to see that the winner-take-all assignment is
optimal when α = 0, i.e., without concern for the expenditure.
We start with the opposite case of α = 1.

Proposition 2. Assume α = 1. When the distribution F is IFR, the
random assignment, i.e., π1 = · · · = πn = 1/n, is an optimal
assignment. On the other hand, when the distribution F is DFR, the
winner-take-all assignment, i.e., π1 = 1, is an optimal assignment.

Proof. By Lemma 1, the coefficients of expression (2) are
increasing (decreasing, resp.) when F is IFR (DFR, resp.). Hence, the
results follow by solving the simple linear programming problem
ofmaximizing

∑n
k=1 k(µk:n−µk+1:n)πk with respect toπk’s subject

to π1 ≥ · · · ≥ πn ≥ 0 and π1 + · · · + πn = 1. �

This result may be interpreted as follows. Observe first that
players with high valuations are relatively abundant (scarce, resp.)
under IFR (DFR, resp.). Intuitively, the relative scarcity of high
valuations may induce (i) the appreciation of high valuations for
the attainment of allocative efficiency and (ii) less competition
(expenditure inefficiency) among those with high valuations.
Thus, allocative performance weighs more than expenditure
inefficiency. This makes the winner-take-all assignment optimal
under DFR. The opposite holds true under IFR, making the random
assignment optimal. As a matter of fact, random assignments (or
alternatively called as lotteries) arewidely used inmany allocation
problems. While fairness is often invoked as a major concern, this
paper shows that efficiency concernmay lead to the use of random
assignment rules when expenditure inefficiency is incorporated.17
We next turn to the general case.

Proposition 3. Assume 0 ≤ α ≤ 1. The winner-take-all assignment,
i.e., π1 = 1, is an optimal assignment when the distribution F is DFR.
On the other hand, any assignment rule may be optimal depending
on the relative importance of expenditure inefficiency, i.e., on the
magnitude of α, when F is IFR.

Proof. Observe in expression (1) that net efficiency is a convex
combination of the expected value of k-th normalized spacing and
the expected value of the k-th order statistic. Since the former is
decreasing by Lemma 1 when F is DFR and the latter is decreasing
also, the first assertion follows. As for the second assertion, we give
an example below. �

Example 1 (The Optimal Assignment may Depend on α when F is
IFR). Let n = 2 so that there are two players, and let F(x) = x so
that the distribution is uniform on the interval [0, 1]. Net efficiency
is given by

1
3
(1 + α + (1 − 2α)π1).

Hence, the winner-take-all assignment is optimal when α < 1/2
and the random assignment is optimal when α > 1/2. Any
assignmentπ1 ∈ [0, 1]withπ2 = 1−π1 is optimalwhenα = 1/2.

16 Shaked and Shanthikumar (2007) is a very good reference.
17 It is worthwhile to note at this juncture that Budish et al. (2011) recently focus
on, among others, implementing random allocation mechanisms when a set of
feasibility constraints are imposed. They especially pay attention to two alternative
mechanisms proposed by Hylland and Zeckhauser (1979) and Bogomolnaia and
Moulin (2001).



Author's personal copy

674 K. Yoon / Journal of Mathematical Economics 47 (2011) 670–676

Note that, given the nature of our linear programming, either
the winner-take-all assignment or the random assignment will be
generically an optimal rank-order assignment when there are only
two players. We may get other optimal rank-order assignment
rules when n ≥ 3.

Example 2 (The Optimal Assignment may be Intermediate when F is
neither IFR nor DFR). Let n = 3 and F(x) =

√
x on the interval

[0, 1]. Observe that this distribution is neither IFR nor DFR. Since
(µ1:3, µ2:3, µ3,3) = (6/10, 3/10, 1/10) and net efficiency is given
by

(µ1:3 − µ2:3)π1 + 2(µ2:3 − µ3:3)π2 + 3µ3:3π3

when α = 1, the optimal assignment rule is π1 = π2 = 1/2 and
π3 = 0.

While we have obtained these results for rank-order assign-
ment rules, we want to emphasize that Propositions 2 and 3 are
still valid even when we consider more general assignment rules.
That is, for the distributions in Propositions 2 and 3, these assign-
ment rules are optimal mechanisms not just among rank-order as-
signment rules but among all possible assignment rules.18 Please
refer the Appendix for details as well as for a discussion on how
the restriction to rank-order assignment rules may be binding.

2.3. Comparative statics

Intuition may suggest that the optimal assignment becomes
more like the winner-take-all assignment than the random
assignment as the uncertainty of valuation increases, i.e., the
variability or the dispersion of the distribution increases. The
following simple counter-example shows that this is not true. The
gamma distribution with parameter c has the density of f (x) =

xc−1e−x/Γ (c), with both the mean and the variance being equal to
c. Since the variance increases as c increases, we may think that
the gamma distribution with c = 2 exhibits greater uncertainty
than the gamma distribution with c = 1/2. But it follows from
Proposition 2 that the optimal assignment when α = 1 is the
random assignment for the former, while it is the winner-take-all
assignment for the latter since the gamma distribution is IFR for
c ≥ 1 and DFR for c ≤ 1.19

Nevertheless, we now show that the net efficiency of the
optimal assignment rule for any α ∈ [0, 1] increases as the
variability of the distribution increases. We need additional facts
from the theory of stochastic orders. First, a vector c = (c1, . . . , cn)
is said to be smaller in the majorization order than the vector
d = (d1, . . . , dn), denoted c ≺ d, if

∑n
i=1 ci =

∑n
i=1 di and if∑j

i=1 c[i] ≤
∑j

i=1 d[i] for j = 1, . . . , n − 1, where c[i] and d[i] are
the i-th largest elements of c and d, respectively, for i = 1, . . . , n.
Now, let X and Y be two random variables defined on the intervals
[a, b] and [a′, b′

] respectively, with distributions F and G which
admit strictly positive densities f and g . The following lemma is
from Barlow and Proschan (1966).20,21

Lemma 2. Let a = a′
= 0, F(0) = G(0) = 0, G−1F(x)/x be

increasing on [0, b], and E[X] = E[Y ].22 Then,
(i) (µX

1:n, . . . , µ
X
n:n) ≺ (µY

1:n, . . . , µ
Y
n:n) in the majorization order.

(ii)
∑n

k=1 ckk(µ
X
k:n − µX

k+1:n) ≤
∑n

k=1 ckk(µ
Y
k:n − µY

k+1:n) for c1 ≥

c2 ≥ · · · ≥ cn.

18 To be precise, we need to set v = 0.
19 For many characterizations of useful distributions, see Patel et al. (1976).
20 This is a restatement of parts of their Theorem 3.9. Note that the order statistics
are arranged in a decreasing order in this paper, while they are arranged in an
increasing order in Barlow and Proschan (1966).
21 As noted in the introduction, Hoppe et al. (2009) is one of the first papers that
utilize this important result in economics.
22 G−1F(x) is said to be starshaped in x when G−1F(x)/x is increasing in x ≥ 0.

In the lemma,µX
k:n andµY

k:n are respectively the expected values
of the k-th highest among n order statistics independently drawn
from the distributions F and G. It is known that if G−1F(x)/x is
increasing and E[X] = E[Y ] then X second-order stochastically
dominates Y , i.e.,

 z
0 F(t) dt ≤

 z
0 G(t) dt for all z.23 Thus, Y is more

variable than X . We have:

Proposition 4. When the distribution of valuations becomes more
variable in the sense that it changes from F to G with G−1F(x)/x
increasing, togetherwith the assumptions of Lemma 2, both allocative
performance and net efficiency of the optimal assignment rule
increase.

Proof. First, it is easy to see that allocative performance
∑n

k=1 πk
µk:n is higher under G for any π1 ≥ · · · ≥ πn since
(µX

1:n, . . . , µ
X
n:n) ≺ (µY

1:n, . . . , µ
Y
n:n) in the majorization order by

Lemma 2(i). Next, since net efficiency in Eq. (1) is

α

n−
k=1

k(µk:n − µk+1:n)πk + (1 − α)

n−
k=1

µk:nπk

and both summations increase under G by Lemma 2, we conclude
that the maximum net efficiency under Gmust increase. �

Hence, allocative efficiency dominates expenditure inefficiency
as the variability of the distribution increases. In other words,
even if expenditure inefficiency may increase as the variability
increases, net efficiency unambiguously improves for any portion
α that is considered as inefficiency.

We next see the effect of changes in the number of players.
Suppose the number of players increases from n to n′, with n′ > n.
For any given assignment rule (π1, . . . , πn), let (π1, . . . , πn′) to be
(π1, . . . , πn, 0, . . . , 0), i.e., set πn+1 = · · · = πn′ = 0. Then, it is
easy to see that allocative performance

∑n
k=1 πkµk:n increases for

any (π1, . . . , πn) sinceµk:n is an increasing function of n for all k =

1, . . . , n.24 As for net efficiency, assume first that the distribution
F is DFR. The winner-take-all assignment is an optimal assignment
by Proposition 3, so net efficiency is α(µ1:n − µ2:n) + (1 − α)µ1:n.
It increases in n since µ1:n − µ2:n as well as µ1:n increases as n
increases.25 Thus, more competition leads to higher net efficiency
even when expenditure inefficiency is considered. On the other
hand, net efficiency does not changewhen the random assignment
is an optimal assignment rule, such as when F is IFR and α = 1,
since allocative performance is E[v1] and expenditure inefficiency
is zero.

We finally note that the analysis can be extended in a
straightforward manner to the case of multiple objects. All we
need to modify is the feasibility of the assignment rule. Hence, if
m homogeneous and indivisible objects are to be assigned to n
players each of whom demands at most one unit with m < n,
then the rank-order assignment rule must satisfy 0 ≤ πk ≤ 1
for all k = 1, . . . , n and

∑n
i=1 πk = m. Then, players’ equilibrium

strategies remain the same, and all the results are essentially intact.
All we need to do is to adjust properly according to the feasibility
of assignment rules: For example, an optimal assignment rule is
π1 = π2 = · · · = πm = 1 when F is DFR, while it is π1 = π2 =

· · · = πn =
m
n when F is IFR and α = 1.

23 See Theorem 4.B.4. of Shaked and Shanthikumar (2007).
24 µk:n is an increasing function of n since vk:n ≤lr vk:n′ , i.e., the former is smaller
than the latter in the likelihood ratio order for n′ > n.
25 µ1:n −µ2:n increases in n since vk:n − vk+1:n ≤hr vk:n′ − vk+1:n′ , i.e., the former is
smaller than the latter in the hazard rate order for n′ > n when the distribution F
is DFR and absolutely continuous. See, for example, Theorem 1.B.31 of Shaked and
Shanthikumar (2007).
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3. Conclusion

We have characterized the structure of optimal assignment
rules as taking both allocative inefficiency and expenditure
inefficiency into consideration. We have shown that the optimal
structure depends crucially on the hazard rate of the value
distribution F . Thus, if the hazard rate is decreasing (i.e., F is
DFR), or equivalently 1 − F(x) is log-convex, then it is optimal to
assign the object deterministically to the player with the highest
valuation. On the other hand, if the hazard rate is increasing
(i.e., F is IFR), or equivalently 1 − F(x) is log-concave, and all
the expenditure counts as social costs (i.e., α = 1) then it is
optimal to assign the object randomly. Intermediate assignment
rules may also be optimal that assign the object to one of the
players in a strict subset, say a group of n′ < nplayers in decreasing
order of valuation, with equal probability. We have also shown
that both allocative performance and net efficiency of the optimal
assignment rule increase as the variability of the value distribution
increases in the sense that it changes from F to G with G−1F(x)/x
increasing in x.
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Appendix. A general mechanism design approach (with asym-
metry)

We do not claim originality of the material in this appendix:
It is a straightforward adaptation of Myerson’s (1981) original
auction design approach, though some care should be given to the
payoff of the lowest possible type.26 Hartline and Roughgarden
(2008), Chakravarty and Kaplan (2009) and Condorelli (2011) have
obtained similar derivations.

Let N = {1, 2, . . . , n} denote the set of players. Player i’s
valuation, denoted by vi, is drawn from Vi = [vi, vi] according to
the distribution function Fi. We assume that 0 ≤ vi ≤ vi ≤ ∞,
and that Fi admits a continuous and strictly positive density fi.
Assume also that vi’s for i = 1, . . . , n are independent. We use
usual notation such as v, V , v−i, and V−i to denote the vector of
valuations. In addition, let φ = f1 × f2 × · · · × fn, and use φ−i as
usual.

A direct mechanism is a pair (p̂, x̂) of outcome functions, with
p̂ : V → Rn

+
and x̂ : V → Rn

+
.27 Hence, if the reported vector of

valuations is v, then p̂i(v) is the probability that i gets the object
and x̂i(v) is the level of expenditure that i exerts. By the revelation
principle, it is with no loss of generality to restrict our attention
to direct mechanisms. Players i’s payoff is p̂ivi − xi when he gets
the object with probability p̂i, his valuation is vi, and he exerts an
expenditure of xi. Hence, we assume that players are risk neutral
and have additively separable utility functions.

Define

qi(vi) =

∫
V−i

p̂i(v)φ−i(v−i) dv−i

26 See (A.5) and (A.6) below and the discussion thereafter.
27 We use the notation (p̂, x̂) to distinguish from similar notation in the text. The
reason is that these functions are defined on the space of valuations, while the
assignment rule in the text is defined on the space of expenditures.

to be the conditional expected probability assignment, and

yi(vi) =

∫
V−i

x̂i(v)φ−i(v−i) dv−i,

to be the conditional expected expenditure. If i believes that others
will report truthfully, and i reportswi when his true type is vi, then
his expected payoff is

Ui(wi, vi) = qi(wi)vi − yi(wi).

The mechanism (p̂, x̂) is said to be incentive compatible if

Ui(vi, vi) ≥ Ui(wi, vi), ∀i ∈ N, ∀wi, vi ∈ Vi, (A.1)

and individually rational if

Ui(vi, vi) ≥ 0, ∀i ∈ N, ∀vi ∈ Vi. (A.2)

In addition, we impose the probability condition

p̂i(v) ≥ 0, ∀i ∈ N and
n−

j=1

p̂j(v) = 1, ∀v ∈ V . (A.3)

The mechanism (p̂, x̂) is said to be feasible if it satisfies (A.1)–
(A.3). Following thewell-establishedmethod originally inMyerson
(1981), we have:

Lemma A. Themechanism (p̂, x̂) is feasible if and only if the following
conditions hold:

wi ≤ vi ⇒ qi(wi) ≤ qi(vi), ∀i ∈ N, ∀wi, vi ∈ Vi; (A.4)

yi(vi) = qi(vi)vi − qi(vi)vi + yi(vi)

−

∫ vi

vi

qi(wi) dwi, ∀i ∈ N, ∀vi ∈ Vi; (A.5)

qi(vi)vi − yi(vi) ≥ 0, ∀i ∈ N; (A.6)

together with

p̂i(v) ≥ 0, ∀i ∈ N and
n−

j=1

p̂j(v) = 1, ∀v ∈ V . (A.3)

Note well that this lemma implies that the monotonicity (A.4)
must be satisfied in any incentive compatible assignment rule.

The objective in this paper is to maximize net efficiency∫
V


n−

i=1

[p̂i(v)vi − αx̂i(v)]


φ(v) dv

=

n−
i=1

∫
Vi
[qi(vi)vi − αyi(vi)]fi(vi) dvi

=

n−
i=1

∫
Vi


qi(vi)vi − α


qi(vi)vi − qi(vi)vi + yi(vi)

−

∫ vi

vi

qi(wi) dwi


fi(vi) dvi

=

n−
i=1

∫
Vi


(1 − α)qi(vi)vi + α

∫ vi

vi

qi(wi) dwi

− α{yi(vi) − qi(vi)vi}


fi(vi) dvi

=

∫
V


n−

i=1

[
(1 − α)vi + α

1 − Fi(vi)

fi(vi)

]
p̂i(v)


φ(v) dv

− α

n−
i=1

{yi(vi) − qi(vi)vi}
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subject to (A.3), (A.4) and (A.6). Now assume that vi = 0 for all
i = 1, . . . , n. Then, it is obvious that yi(vi) = 0 for the maximiza-
tion since xi ≥ 0. It is also obvious that (A.6) holds automatically.
To summarize, the problem is to choose (p̂, x̂) to maximize∫
V


n−

i=1

[
(1 − α)vi + α

1 − Fi(vi)

fi(vi)

]
p̂i(v)


φ(v) dv

subject to (A.3) and (A.4).
We now describe the optimal mechanism. Define the functions

from [0, 1] to R as follows:

hi(q) = (1 − α)F−1
i (q) + α

1 − q

fi(F−1
i (q))

,

Hi(q) =

∫ q

0
hi(r) dr,

Gi(q) = convHi(q), gi(q) = G′

i(q).

Note that Gi is the convex hull of the function Hi. As a convex
function, Gi is continuously differentiable except at countably
many points, and its derivative ismonotone increasing. Define gi as
extending by right-continuitywhenGi is not differentiable. Finally,
let

c i(vi) = gi(Fi(vi)) and

M(v) =


i ∈ N | c i(vi) = max

j∈N
c j(vj)


.

Observe that Gi = Hi, gi = hi, and c i(vi) = (1 − α)vi + α(1 −

Fi(vi))/fi(vi) when (1 − α)vi + α(1 − Fi(vi))/fi(vi) is increasing.
We have:

Proposition A. Let p : V → Rn
+
and x : V → Rn

+
satisfy

pi(v) =


1/|M(v)| if i ∈ M(v),
0 otherwise,

and

xi(v) = pi(v)vi −

∫ vi

vi

pi(wi, v−i) dwi.

Then, (p, x) represents an optimal mechanism.

This proposition gives us the following characterizations.

(1) When α = 0: It is optimal to assign the object with probability
one to the bidder with the highest vi. That is, the winner-take-
all assignment is optimal.

(2) When α = 1: If the distribution Fi’s are DFR, then it is optimal
to assign the object with probability 1 to the bidder with the
highest (1− Fi(vi))/fi(vi). When players are symmetric so that
F1 = F2 = · · · = Fn, it is optimal to assign the object with
probability 1 to the bidder with the highest vi. On the other
hand, if the distribution Fi’s are IFR and players are symmetric,
then it is optimal to assign the object with equal probability,
that is, the random assignment is optimal.

(3) When 0 < α < 1: If the distribution Fi’s are DFR and players
are symmetric, then it is optimal to assign the object with
probability 1 to the bidder with the highest vi.

Hence, Propositions 2 and 3 in the text are still valid even when
we consider more general mechanisms. Moreover, it is not hard to
observe that the restriction to rank-order assignment rules may be
binding only if (1 − α)vi + α(1 − Fi(vi))/fi(vi) is not monotonic
with respect to vi. In this case, the example below shows how the
rank-order assignment rule may differ from the general optimal
mechanism.

Example A. Let α = 1 and Fi(vi) =
√

vi on the support [vi, vi] =

[0, 1] for all i = 1, . . . , n. Then, (1 − Fi(vi))/fi(vi) = 2
√

vi − 2vi,
hi(q) = 2q − 2q2 and Hi(q) = q2 − 2q3/3 on [0, 1]. Thus,

Gi(q) =


q2 −

2
3
q3 when 0 ≤ q ≤

1
4
,

−
1
24

+
3
8
q when

1
4

≤ q ≤ 1,

gi(q) =


2q − 2q2 when 0 ≤ q ≤

1
4
,

3
8

when
1
4

≤ q ≤ 1,

and

c i(vi) =


2
√

vi − 2vi when 0 ≤ vi ≤
1
16

,

3
8

when
1
16

≤ vi ≤ 1.

When there are three players with (v1, v2, v3) = (1/2, 1/17,
1/18), it is optimal to assign the object to player 1, i.e., p1(1/2,
1/17, 1/18) = 1. On the other hand, when (v1, v2, v3) = (1/2,
1/15, 1/18), it is optimal to have p1(1/2, 1/15, 1/18) = p2(1/2,
1/15, 1/18) = 1/2. Therefore, the optimal assignment changes
with players’ valuations. Compare this with Example 2 in which
the optimal rank-order assignment rule is π1 = π2 = 1/2,
independent of players’ valuations.
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