
Economics Letters 188 (2020) 108966

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Implementability with contingent contracts
Kiho Yoon
Department of Economics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

a r t i c l e i n f o

Article history:
Received 14 November 2019
Received in revised form 14 January 2020
Accepted 14 January 2020
Available online 17 January 2020

JEL classification:
C72
D47
D82

Keywords:
Implementation
Dominant strategies
Contingent contracts
Linear contracts

a b s t r a c t

We establish the equivalence of implementability by a contingent contract, implementability by a
linear contract, acyclicity, and scaled cycle monotonicity when the type space is a compact metric
space. We employ graph-theoretic arguments.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the fundamental results in mechanism design is the
characterization of implementability via monotonicity. Myerson
(1981) has shown for one-dimensional type spaces that a neces-
sary and sufficient condition for implementability is the mono-
tonicity of allocation rule (together with an integrability require-
ment). Rochet (1987) has established for general type spaces
that a necessary and sufficient condition for implementability is
cycle monotonicity. Several papers, including Saks and Yu (2005),
Bikhchandani et al. (2006) and Ashlagi et al. (2010), have ex-
amined the type spaces in which weak monotonicity, which is
closely connected to the monotonicity of the allocation rule, is
both necessary and sufficient for implementability. In particular,
Archer and Kleinberg (2014) have shown that local weak mono-
tonicity and vortex-freeness together imply and are implied by
cycle monotonicity, and hence are necessary and sufficient for
implementability, when the type space is convex.

While these papers have considered implementability when
only upfront lump-sum payments are possible, Deb and Mishra
(2014) recently studied implementability with contingent con-
tracts, i.e., when the payments can also depend on realized out-
comes. This work is significant since contingent contracts are
widely used in many practical settings. In oil and gas lease auc-
tions, for instance, buyers pay a fixed percentage of revenues

E-mail address: kiho@korea.ac.kr.
URL: http://econ.korea.ac.kr/~kiho.

in royalties in addition to upfront cash payments. Other exam-
ples include intercorporate asset sales, licensing agreements for
intellectual property, and build-operate-transfer highway con-
struction contracts in procurements.1 They showed that (i) a
necessary and sufficient condition for implementability by a con-
tingent contract is acyclicity, and that (ii) implementability by a
contingent contract is equivalent to implementability by a linear
contract. They also qualitatively described implementable alloca-
tion rules. They proved the results, however, under the finite type
space assumption.

In this paper, we extend their results to more general type
spaces. In particular, we establish the equivalence of imple-
mentability by a contingent contract, implementability by a linear
contract, acyclicity, and scaled cycle monotonicity when the type
space is a compact metric space. We employ a graph-theoretic
approach to implementability, which not only makes this exten-
sion possible but also gives a new and simple proof for the finite
type space case. In particular, we utilize the topological sort of a
directed acyclic graph.

The extension beyond finite type spaces is not merely an exer-
cise in mathematical completeness. In most practical situations,
including the ones listed above, it is simply implausible that
the agents have only finite possible realizations of their private
information: If agents think they may have ‘one more’ value
distinct from the others currently deemed possible, then the finite
type space assumption is not appropriate.2

1 Please refer to Skrzypacz (2013) and Deb and Mishra (2014) and the
references therein for detailed discussion on contingent contracts.
2 See McAfee and Reny (1992) for a related discussion.

https://doi.org/10.1016/j.econlet.2020.108966
0165-1765/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.econlet.2020.108966
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2020.108966&domain=pdf
mailto:kiho@korea.ac.kr
http://econ.korea.ac.kr/~kiho
https://doi.org/10.1016/j.econlet.2020.108966

2 K. Yoon / Economics Letters 188 (2020) 108966

2. Characterization of implementability

We consider a single-agent setting without loss of generality.3
Let A denote the set of alternatives. A type of the agent is given
by a map v : A → R. Let V denote the set of types. An allocation
rule is a map f : V → A.

The fundamental difference separating mechanism design
with contingent contracts from the standard mechanism design
setting with only upfront lump-sum payments is that ex post
payoff of the agent is contractible. The concept of dominant
strategy incentive compatibility in this setting is defined below.

Definition 1. An allocation rule f is implementable by a linear
contract if there exists a linear contract (r, t), where r : V →

(0, ∞) and t : V → R, such that

r(v)v(f (v)) − t(v) ≥ r(v′)v(f (v′)) − t(v′)

for all v, v′
∈ V . Then we say that the linear mechanism (f , r, t)

is incentive compatible.
Note that, when r(v) = 1 for all v ∈ V , this reduces to

implementability by a lump-sum transfer scheme, and the cor-
responding mechanism (f , t) is the standard dominant strategy
incentive compatible mechanism.

Definition 2. An allocation rule f is implementable (by a contin-
gent contract) if there exists a contingent contract s : R×V → R
that is strictly increasing in the first argument such that

s(v(f (v)), v) ≥ s(v(f (v′)), v′)

for all v, v′
∈ V . Then we say that the contingent mechanism (f , s)

is incentive compatible.
Observe that implementability by a lump-sum transfer scheme

implies implementability by a linear contract, which in turn im-
plies implementability (by a contingent contract). We now em-
ploy the graph-theoretic approach to implementability. Repre-
sentative works of this approach include Müller et al. (2007) and
Heydenreich et al. (2009). The type graph Gf given an allocation
rule f has the node set V and contains a directed edge from any
node v to any other v′ of length4

l(v, v′) = v(f (v)) − v′(f (v)).

Definition 3. An allocation rule f satisfies cycle monotonicity if,
for any finite cycle v1, . . . , vk, vk+1

= v1 of types in V , we have
k∑

i=1

l(vi, vi+1) ≥ 0.

Definition 4. An allocation rule f satisfies scaled cycle monotonic-
ity if there exists a function λ : V → (0, ∞) such that, for any
finite cycle v1, . . . , vk, vk+1

= v1 of types in V , we have
k∑

i=1

λ(vi)l(vi, vi+1) ≥ 0.

Definition 5. An allocation rule f satisfies acyclicity if, for any
finite cycle v1, . . . , vk, vk+1

= v1 of types in V , we have

l(v1, v2) ≤ 0, . . . , l(vk−1, vk) ≤ 0 ⇒ l(vk, v1) ≥ 0.

3 It is straightforward to extend the results to the multi-agent setting. We
focus on the single-agent setting for notational convenience.
4 Note that the weight, rather than the length, is a more standard term in

the graph theory. We use the length to respect the convention in this literature.

Observe that cycle monotonicity (CM henceforth) implies
scaled cycle monotonicity (SCM henceforth), which in turn im-
plies acyclicity (AC henceforth): CM implies SCM since we can
set λ(v) = 1 for all v ∈ V . For AC, assume l(v1, v2) ≤

0, . . . , l(vk−1, vk) ≤ 0. Since
∑k

i=1 λ(vi)l(vi, vi+1) ≥ 0 by SCM and
λ(vi) > 0, we must have l(vk, v1) ≥ 0.

Rochet (1987) has established that a necessary and sufficient
condition for the implementability of an allocation rule f by a
lump-sum transfer is CM. Similarly, we establish below that a
necessary and sufficient condition for the implementability of an
allocation rule f (by a contingent contract) is AC, and moreover,
every implementable allocation rule can be implemented by a
linear contract. We first state the following proposition without
proof, since it is a reproduction of the results in Deb and Mishra
(2014).

Proposition 1. (a) (Lemma 1 of Deb and Mishra) If an allocation
rule f is implementable (by a contingent contract), then it is acyclic.
(b) (Proposition 2 of Deb and Mishra) If an allocation rule f satisfies
SCM, then it is implementable by a linear contract.

This proposition shows that (i) SCM implies implementability
by a linear contract, (ii) which obviously implies implementability
(by a contingent contract), and (iii) which in turn implies AC.
Thus, if we can show that AC implies SCM then all these proper-
ties are equivalent. We have the following proposition for infinite
type spaces. We need to assume that A is a topological space so
that the continuity of f : V → A and v : A → R can be defined.

Proposition 2. Assume that the set V of types is a compact metric
space. Assume also that the allocation rule f and each v ∈ V is
continuous. If f satisfies AC, then it satisfies SCM.

Proof. For a fixed δ > 0, consider an open ball B(v, δ) of radius
δ about v ∈ V . The set

⋃
v∈V B(v, δ) covers V . Since V is compact,

there is a finite subcover {B(v1, δ), . . . , B(vn, δ)} of V . Let B̂1(δ) =

B(v1, δ) and B̂j(δ) = B(vj, δ) \
(
B(v1, δ) ∪ · · · ∪ B(vj−1, δ)

)
for

j = 2, . . . , n. Then, {̂B1(δ), . . . , B̂n(δ)} also covers V , and B̂j(δ)’s are
mutually disjoint. We can choose δ sufficiently small such that,
for any ϵ > 0, we have
(i) |v(a) − v′(a)| < ϵ for all a ∈ A and for all v, v′

∈ B̂j(δ) and
(ii) |ṽ(f (v)) − ṽ(f (v′))| < ϵ for all ṽ ∈ V and v, v′

∈ B̂j(δ).
Note in particular that the second inequality follows from the
Heine–Cantor theorem that every continuous function on a com-
pact set is uniformly continuous.

Pick an arbitrary wj from each B̂j(δ) for j = 1, . . . , n. Let
V̂ = {w1, . . . , wn

}. Then, the finite graph Ĝf whose node set is
V̂ and whose directed edges are just those in the original graph,
i.e., l(wj, wj′) = wj(f (wj)) − wj′ (f (wj)) for all j, j′ ∈ {1, . . . , n},
obviously satisfies AC. Hence, it satisfies SCM by Proposition A in
the Appendix. That is, there is a function λ : V̂ → (0, ∞) such
that, for any finite cycle wπ (1), . . . , wπ (k), wπ (k+1)

= wπ (1) in Ĝf
where (π (1), . . . , π (k)) is an ordered collection of distinct mem-
bers of the set {1, . . . , n}, we have

∑k
i=1 λ(wπ (i))l(wπ (i), wπ (i+1)) ≥

0. Observe that we can choose λ : V̂ → (0, ∞) such that λ(wj) ≤

ϵ holds for all wj
∈ V̂ since V̂ is finite and only relative magnitude

matters.5 We now extend the domain of the function λ to V : for
each v ∈ V , define λ(v) = λ(wj) where wj

∈ V̂ is the node picked
from the set B̂j to which v belongs. Since each v ∈ V belongs to
exactly one B̂j by construction, the function λ : V → (0, ∞) is
well-defined.

Consider any finite cycle v1, . . . , vk, vk+1
= v1 in the original

graph Gf . Let wj(i) be the node picked from the set B̂j(i) to which

5 To be specific, let λ = maxwj∈V̂ λ(wj) and reset λ(wj) as ϵλ(wj)/λ for all
wj

∈ V̂ .

K. Yoon / Economics Letters 188 (2020) 108966 3

i belongs. We have wj(i)(f (wj(i))) − vi(f (vi)) = wj(i)(f (wj(i))) −

vi(f (wj(i))) + vi(f (wj(i))) − vi(f (vi)) < 2ϵ as well as vi+1(f (vi)) −

wj(i+1)(f (wj(i))) = vi+1(f (vi)) − vi+1(f (wj(i))) + vi+1(f (wj(i))) −

wj(i+1)(f (wj(i))) < 2ϵ by the inequalities (i) and (ii) above. So, we
have l(wj(i), wj(i+1)) < l(vi, vi+1) + 4ϵ. Hence,

k∑
i=1

λ(vi)l(vi, vi+1) >

k∑
i=1

λ(wj(i))
(
l(wj(i), wj(i+1)) − 4ϵ

)
≥

k∑
i=1

λ(wj(i))l(wj(i), wj(i+1)) − 4kϵ2
≥ −4kϵ2,

where the first inequality follows from λ(vi) = λ(wj(i)) and
the inequality just obtained, the second inequality follows from
λ(wj) ≤ ϵ for all wj

∈ V̂ , and the last inequality follows from the
fact that Ĝf satisfies SCM.6

Since ϵ is arbitrary, we can conclude that f satisfies SCM. To
see this, suppose to the effect of contradiction that f satisfies
AC but not SCM. By the definition of SCM, this contradicts the
argument above. □

Note that the proof essentially collapses the problem into a
finite space problem and uses the results obtained for the latter.
Note also that a discrete space is compact if and only if it is
finite, and that every function is continuous on a discrete domain.
Hence, this proposition applies also to finite type spaces. We
cannot extend this characterization to the case when (i) V is not
compact, (ii) f is not continuous, or (iii) v is not continuous. We
give counterexamples for each of these cases.

Example 1 (AC May Not Imply SCM when V is Not Compact). Let
V = {vθ

: A → R | θ ∈ [0, 1]}, where

vθ (a) =

{
a/θ for θ ∈ (0, 1];
2 for θ = 0.

Let f (vθ) = θ for θ ∈ [0, 1]. We have

l(vθ , vθ ′

) =

⎧⎨⎩
1 − θ/θ ′ when θ, θ ′

∈ (0, 1];
2 when θ = 0 and θ ′

∈ (0, 1];
−1 when θ ∈ (0, 1] and θ ′

= 0.

Thus, l(vθ , vθ ′

) > 0 if and only if θ < θ ′ and so AC is satis-
fied. We now show that f cannot be implemented by a linear
contract. Suppose to the effect of contradiction that it can be
implemented by a linear contract (r, t). Then, adding the two
incentive compatibility conditions for vθ and vθ ′

, we have

r(vθ)l(vθ , vθ ′

) + r(vθ ′

)l(vθ ′

, vθ) ≥ 0.

Observe first that r(v0) ≥ r(vθ)/2 for θ ∈ (0, 1] since
r(v0)l(v0, vθ) + r(vθ)l(vθ , v0) = 2r(v0) − r(vθ) ≥ 0 for θ ∈

(0, 1]. Observe next that r(vθ) ≥ r(v1)/θ for θ ∈ (0, 1) since
r(vθ)/r(vθ ′

) ≥ −l(vθ ′

, vθ)/l(vθ , vθ ′

) = θ ′/θ for 0 < θ < θ ′
≤ 1.

Hence, r(v0) ≥ r(vθ)/2 ≥ r(v1)/(2θ) for θ ∈ (0, 1). The right-
hand side goes to infinity as θ goes to zero. This implies r(v0) =

∞, which is a contradiction. By Proposition 1(b), f does not satisfy
SCM.

Example 2 (AC May Not Imply SCM when f is Not Continuous).
Let V = {vθ

: A → R | θ ∈ [−1, 1]}, where vθ (a) = aθ for
θ ∈ [−1, 1]. Let A = R ∪ {∞} and

f (vθ) =

{
1/θ for θ ∈ [−1, 1] \ {0};
∞ for θ = 0.

6 Observe that it is possible to have wj(i)
= wj(i+1) for some i = 1, . . . , k but

this does not affect the argument since only a cycle involving less nodes results.

We have

l(vθ , vθ ′

) =

⎧⎪⎨⎪⎩
(θ − θ ′)/θ when θ ∈ [−1, 1] \ {0} and θ ′

∈ [−1, 1];
−∞ when θ = 0 and θ ′

∈ (0, 1];
∞ when θ = 0 and θ ′

∈ [−1, 0).

Observe that l(vθ , vθ ′

) > 0 if (i) θ > 0 and θ > θ ′ or (ii) θ < 0
and θ < θ ′. It is straightforward to check that AC is satisfied.
Now consider the cycle v0, v1, v0. For any λ : V → (0, ∞), we
have λ(v0)l(v0, v1) + λ(v1)l(v1, v0) = −∞ + λ(v1) = −∞ < 0.
Hence, f does not satisfy SCM.

Example 3 (AC May Not Imply SCM when v is Not Continuous). Let
V = {vθ

: A → R | θ ∈ [−1, 1]}, where

vθ (a) =

{
θ/a if a ∈ [−1, 1] \ {0};
∞ if a = 0

for θ ∈ [−1, 1] \ {0}, and v0(a) = 0 for all a ∈ [−1, 1]. Let
f (vθ) = θ for θ ∈ [−1, 1]. We have

l(vθ , vθ ′

) =

{
(θ − θ ′)/θ when θ ∈ [−1, 1] \ {0} and θ ′

∈ [−1, 1];
−∞ when θ = 0 and θ ′

∈ [−1, 1] \ {0}.

Observe that l(vθ , vθ ′

) > 0 if (i) θ > 0 and θ > θ ′ or (ii) θ < 0
and θ < θ ′. It is straightforward to check that AC is satisfied.
Now consider the cycle v0, v1, v0. For any λ : V → (0, ∞), we
have λ(v0)l(v0, v1) + λ(v1)l(v1, v0) = −∞ + λ(v1) = −∞ < 0.
Hence, f does not satisfy SCM.

Summarizing the previous arguments, we have:

Theorem. Assume that the set V of types is a compact metric space.
Assume also that the allocation rule f and each v ∈ V is continuous.
The following statements are equivalent:

(i) f is implementable (by a contingent contract).
(ii) f is implementable by a linear contract.
(iii) f satisfies acyclicity.
(iv) f satisfies scaled cycle monotonicity.

3. Conclusion

We have characterized implementability when contingent
payments are possible. Taking a graph-theoretic approach, we
have established the equivalence of implementability by a con-
tingent contract, implementability by a linear contract, acyclicity,
and scaled cycle monotonicity under the assumption that the type
space is a compact metric space and the allocation rule and the
valuations are continuous.7 We have shown by counterexamples
that this characterization is tight.

A drawback of the current setup is that the reports of the types
can be detected ex-post. As Deb and Mishra (2014) have argued,
however, this deterministic model is merely for expositional pur-
poses. We can easily extend the analysis to a stochastic model in
which the ex-post payoff is a random variable and so does not
reveal the types.

Acknowledgments

I thank the anonymous referee for invaluable comments and
suggestions. This work was supported by a Korea University Grant
(K1911191).

7 We note that Theorem B in the supplement to Deb and Mishra (2014)
contains an equivalence result with the additional technical conditions that the
set A of alternatives is a metric space and the allocation rule f is implemented
by a contingent contract s : R × V → R that is twice continuously (partially)
differentiable in the first argument.

4 K. Yoon / Economics Letters 188 (2020) 108966

Appendix

In the appendix, we establish the following proposition. We
want to note that the proof utilizes the topological sort of a
directed acyclic graph.

Proposition A. Assume that the set V of types is finite. If an
allocation rule f satisfies AC, then it satisfies SCM.

We start with a lemma, which is instrumental to the proof
of the main proposition. This modular approach presents the
main idea of the proof in a clear fashion. We introduce a slightly
stronger notion of acyclicity.

Definition A. An allocation rule f satisfies strong acyclicity if, for
any finite cycle v1, . . . , vk, vk+1

= v1 of types in V , we have

l(v1, v2) ≤ 0, . . . , l(vk−1, vk) ≤ 0 ⇒ l(vk, v1) > 0.

We note that this stronger assumption is used only for the
lemma. The main proposition does not impose this assumption,
but the assumption of acyclicity (AC).

Lemma 1. Assume that the set V of types is finite. If an allocation
rule f satisfies strong acyclicity, then it satisfies SCM.

Proof. Fix the allocation rule f , and define a new graph H which
is derived from the type graph Gf as follows. The node set is V ,
and for any v, v′

∈ V , there is an unweighted directed edge from
v to v′ if and only if l(v, v′) ≤ 0 in Gf . By strong acyclicity, H does
not contain a cycle, that is, it is a DAG (directed acyclic graph).

Then, as is well-known in the field of computer science, there
is a topological sort of H: there is a linear ordering of all nodes
v ∈ V such that if there is a directed edge from v to v′ then the
node v appears before the node v′ in this ordering.8 Rename, if
needed, the nodes in V (for both Gf and H) in an increasing order
according to this topological sort. An important fact about a DAG
is that it contains no back edge. Thus, any edge from vi to vj with
i > j in our original graph Gf has a positive length l(vi, vj) > 0.

Let n be the cardinality of V , and let

m = min
v,v′∈V

{l(v, v′)|l(v, v′) > 0} and M = max
v,v′∈V

|l(v, v′)|,

where |l(v, v′)| is the absolute value of l(v, v′). Note that both
m and M belong to the interval (0, ∞) due to strong acyclicity
and the finiteness of V . Let λ(v1) = 1, and recursively define for
i = 2, . . . , n that

λ(vi) =
M
m

i−1∑
j=1

λ(vj).

Now, a cycle in Gf can be represented by (vπ (1), . . . , vπ (k)),
where (π (1), . . . , π (k)) is an ordered collection of distinct mem-
bers of the set {1, . . . , n}. This is a cycle with directed edges
from vπ (i) to vπ (i+1) for i = 1, . . . , k with the convention that
vπ (k+1)

= vπ (1). When π (i) < π (i+1), we have l(vπ (i), vπ (i+1)) ≤ 0
if there is an edge in H from vπ (i) to vπ (i+1); otherwise, we have
l(vπ (i), vπ (i+1)) > 0. On the other hand, when π (i) > π (i + 1), we
always have l(vπ (i), vπ (i+1)) > 0 since there is no back edge in H .

Consider any cycle (vπ (1), . . . , vπ (k)) in Gf , and let π (i∗) be the
largest number among {π (1), . . . , π (k)}, i.e., π (i∗) > π (i) for all
i ∈ {1, . . . , k} \ {i∗}. Thus, we have l(vπ (i∗), vπ (i∗+1)) > 0. By our
construction of λ(vi), we have

λ(vπ (i∗))l(vπ (i∗), vπ (i∗+1)) ≥ mλ(vπ (i∗)) = M
π (i∗)−1∑

i=1

λ(vj)

8 See, for example, chapter 22 of Cormen et al. (2009).

≥

∑
i∈{1,...,k}\{i∗}

−λ(vπ (i))l(vπ (i), vπ (i+1)).

Hence,
∑k

i=1 λ(vπ (i))l(vπ (i), vπ (i+1)) ≥ 0 and SCM is satisfied. □

In the proof, (i) we first define a DAG (directed acyclic graph)
H , (ii) topologically sort the nodes, and then (iii) assign progres-
sively larger λ(vi) to the sorted nodes such that the scaled length
of a later node would dominate the sum of the scaled lengths
of the previous ones. This works since there is no back edge in
the topological sort when strong acyclicity holds. In comparison,
we need one more step of limiting argument when the allocation
rule f satisfies only acyclicity, not strong acyclicity, since there
may exist a back edge of non-positive length in Gf . We first state
the following straightforward fact.

Lemma 2. Assume that an allocation rule f satisfies AC. If
l(vi, vi+1) ≤ 0 for a finite cycle v1, . . . , vk, vk+1

= v1, then
l(vi, vi+1) = 0 for all i = 1, . . . , k.

Proof. Suppose to the effect of contradiction that there is some
i for which l(vi, vi+1) < 0. Then, the cycle vi+1, vi+2, . . . , vk,
v1, . . . , vi, vi+1 does not satisfy AC. □

We now establish our assertion for finite spaces.

Proof of Proposition A. For any ϵ > 0, define a new type graph
Gϵ
f as the one obtained by changing the length of all edges in

Gf with l(v, v′) = 0 to lϵ(v, v′) = ϵ. Then, Gϵ
f satisfies strong

acyclicity by Lemma 2 since any possible negative cycle with
l(vi, vi+1) ≤ 0 for all i = 1, . . . , k is eliminated by the changes,
and so satisfies SCM by Lemma 1.

Since Gf is the limit of Gϵ
f as ϵ → 0, it also satisfies SCM. To

see this, suppose to the effect of contradiction that Gf does not
satisfy SCM. Then, for any given λ : V → (0, ∞), there exists a
finite cycle v1, . . . , vk, vk+1

= v1 with
∑k

i=1 λ(vi)l(vi, vi+1) < 0.
Note that there are only a finite number of cycles since V is finite.
Thus, ranging over λ only gives a finite number of such cycles. We
observe that we can restrict the range of λ as (0, 1) instead of
(0, ∞) since what really matters here is only relative magnitude.
Hence, for sufficiently small ϵ > 0, there is a graph Gϵ

f such that
for all λ : V → (0, 1) we have

∑k
i=1 λ(vi)lϵ(vi, vi+1) < 0. This

contradicts the fact that Gϵ
f for all ϵ > 0 satisfies SCM. □

References

Archer, A., Kleinberg, R., 2014. Truthful germs are contagious: a local to global
characterization of truthfulness. Games Econom. Behav. 86, 340–366.

Ashlagi, I., Braverman, M., Hassidim, A., Monderer, D., 2010. Monotonicity and
implementability. Econometrica 78, 1749–1772.

Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A., 2006. Weak
monotonicity characterizes deterministic dominant-strategy implementation.
Econometrica 74, 1109–1132.

Cormen, T., Leiserson, C., Rivest, R., Stein, C., 2009. Introduction to Algorithms.
MIT Press.

Deb, R., Mishra, D., 2014. Implementation with contingent contracts.
Econometrica 82, 2371–2393.

Heydenreich, B., Müller, R., Uetz, M., Vohra, R., 2009. Characterization of revenue
equivalence. Econometrica 77, 307–316.

McAfee, P., Reny, P., 1992. Correlated information and mechanism design.
Econometrica 60, 395–421.

Müller, R., Perea, A., Wolf, S., 2007. Weak monotonicity and bayes-nash incentive
compatibility. Games Econom. Behav. 61, 344–358.

Myerson, R., 1981. Optimal auction design. Math. Oper. Res. 6, 58–73.
Rochet, J.-C., 1987. A necessary and sufficient condition for rationalizability in a

quasi-linear context. J. Math. Econom. 16, 191–200.
Saks, M.E., Yu, L., 2005. Weak monotonicity suffices for truthfulness on convex

domainsin. In: Proceedings of the 7th ACM Conferences on Electronic
Commerce. ACM Press, pp. 286–293.

Skrzypacz, A., 2013. Auctions with contingent payments - An overview. Int. J.
Ind. Organ. 31, 666–675.

http://refhub.elsevier.com/S0165-1765(20)30014-8/sb1
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb1
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb1
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb2
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb2
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb2
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb3
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb3
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb3
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb3
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb3
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb4
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb4
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb4
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb5
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb5
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb5
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb6
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb6
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb6
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb7
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb7
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb7
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb8
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb8
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb8
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb9
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb10
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb10
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb10
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb11
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb11
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb11
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb11
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb11
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb12
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb12
http://refhub.elsevier.com/S0165-1765(20)30014-8/sb12

	Implementability with contingent contracts
	Introduction
	Characterization of implementability
	Conclusion
	Acknowledgments
	Appendix
	References

