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A FOLK THEOREM FOR ASYNCHRONOUSLY 
REPEATED GAMES 

BY KIHO YOON1 

We prove a Folk Theorem for asynchronously repeated games in which the set of 
players who can move in period t, denoted by I, is a random variable whose distribution 
is a function of the past action choices of the players and the past realizations of IT's, 
T = 1,2,..., t - 1. We impose a condition, the finite periods of inaction (FPI) condition, 
which requires that the number of periods in which every player has at least one 
opportunity to move is bounded. Given the FPI condition together with the standard 
nonequivalent utilities (NEU) condition, we show that every feasible and strictly individu- 
ally rational payoff vector can be supported as a subgame perfect equilibrium outcome of 
an asynchronously repeated game. 

KEYWORDS: Asynchronously repeated games, Folk Theorem. 

1. INTRODUCTION 

THIS PAPER IS CONCERNED WITH determining the set of equilibrium payoffs for 
asynchronously repeated strategic situations, where players may not be able to 
change their actions simultaneously. To state the result, we prove a Folk 
Theorem for asynchronously repeated games (with observable actions and 
discounting) in which the set of players who can move in period t, denoted by It, 
is a random variable whose distribution is a function of the past action choices 
of the players and the past realizations of IT's, i = 1,2, ..., t - 1. We impose a 
condition, the finite periods of inaction (FPI) condition, which requires that the 
number of periods in which every player has at least one opportunity to move is 
bounded. Given the FPI condition together with the nonequivalent utilities 
(NEU) condition of Abreu, Dutta, and Smith (1994), we show that every feasible 
and strictly individually rational payoff vector can be supported as a subgame 
perfect equilibrium outcome of an asynchronously repeated game. 

Asynchronous choice structure, which may occur in many real world situa- 
tions,2 potentially reduces the set of repeated game equilibria. Indeed, Lagunoff 
and Matsui (1997) recently showed that, when a pure coordination game is 
repeated asynchronously 3 and the players are sufficiently patient, the only 
subgame perfect equilibrium payoff is the one that Pareto dominates all other 

1This paper is a revised version of Chapter 2 of my dissertation submitted to the University of 
Minnesota, Minneapolis. I would like to thank my advisor, Professor Andrew McLennan, for his 
guidance. I also thank the editor and two anonymous referees for many helpful comments and 
suggestions. 

2For an example of asynchronous choice structure, see Maskin and Tirole (1988) and the 
references therein. 

3By the way, they use the term 'asynchronous' to mean that only one player can move in each 
period, while we use it to mean that not all the players can move simultaneously in each period. See 
Section 4 for more discussion on the relationship of our results to Lagunoff and Matsui (1997). 
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payoffs. This paper takes on this issue, and shows that the Folk Theorem holds 
for the asynchronous choice environments as well as the standard repeated 
game environments, given the NEU condition. Thus a failure of the NEU 
condition is necessary for the Lagunoff-Matsui uniqueness result. In this sense, 
we provide a common framework in which to understand the standard environ- 
ments as in Fudenberg and Maskin (1986) or Abreu, Dutta, and Smith (1994) 
and the asynchronous choice environments as in Lagunoff and Matsui (1997). 

In the next section, we introduce asynchronously repeated games, which 
include both simultaneous-move repeated games and single-move repeated 
games as special cases. Section 3 contains the Folk Theorems under the 
assumption that mixed actions are observable.4 We prove the Folk Theorem for 
the deterministic case, and then for the stochastic case. Section 4 discusses 
related literature. 

2. THE MODEL 

2.1. The Stage Game 

Let G = (I, (At)>, (ui)7= 1) denote a strategic form game where I = {1,..., n} 
is the set of players, Ai is the finite set of pure actions for player i, and ui is the 
stage game payoff function from A = X7 A to R. The payoff vector u= 

(u1,...,u,,) is a function from A to DR". A mixed action ai for player i is a 
randomization over A . We use z1(A ) to denote the set of mixed actions for i, 
and A = X i=1 A(A ) to denote the set of mixed action profiles, a = (a1,..., a,). 
The function u can be extended as a function from A to R"'] in an obvious way, 
and is continuous. Following the convention, let V be the convex hull of the set 
of feasible payoff vectors {u(a): a EA}. Let vi = mina.maxa ui(ai,a i) be 
player i's minimax value, and a i = (a /i, ai i) be a minimax profile against player 
i. The set Vt = {v E VIvi ? vi for all i} is called the set of feasible, individually 
rational payoff vectors, and similarly the set V * = {v E VIvi > vi for all i} is 
called the set of feasible, strictly individually rational payoff vectors. We normal- 
ize utilities to obtain vi = 0 for all i. 

We assume that the stage game satisfies the nonequivalent utilities (NEU) 
condition introduced by Abreu, Dutta, and Smith (1994). 

CONDITION 1 (Nonequivalent Utilities): For all i and j in I, there do not exist 
scalars c, d where d > 0 such that ui(a) = c + du1(a) for all a EA. 

2.2. Asynchronously Repeated Games 

We now define asynchronously repeated games. The stage game is repeated in 
periods t = 0,1,.... In period 0, all players choose their respective actions 

4It is conceptually straightforward to extend the results to the unobservable mixed action case, 
although we did not work this out in full detail. 
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a = (a1, ... , a,,). In period t 2 1, a subset I, c I of players (I, may be 0) are able 
to change their actions a, = a . Let I, be a realization of the 2 -valued 
random variable It whose distribution is a function of the sequence I(t- 1)= 

(IJ) ... . It 1) of past realizations of IT's, r = 1,.. ., t- 1, and the sequence 
a(t - 1) = (ao,..., at-1) of past mixed action profiles. We will use y(t) to 
denote (I(t), a(t)). Then y(t) can be regarded as a history at the end of period 
t. We assume that players learn the sequence I(t) when they are given opportu- 
nities to move, and that they know the distributions of the random variables 
tit= 1 

This formulation includes quite a large class of repeated strategic situations, 
both deterministic and stochastic. We name a few: 

EXAMPLE 1 (Simultaneous-move Games): It = I for all t. This is the environ- 
ment studied in the standard Folk Theorems. 

EXAMPLE 2 (Single-move Games): It is a singleton for all t. This is the 
environment studied in Lagunoff and Matsui (1997), and the related literature 
cited there. 

EXAMPLE 3 (Endogenous Timing with Short-run Commitment): If player i 
changes his action in period t, then he is committed to it for s periods. 

An asynchronously repeated game is a tuple F = (G, {It}t1' 8), where 8 is the 
common discount factor. 

2.3. Strategies 

A history at the beginning of period t, a t-history, is h(t) = (a 0, IJ, 
a1, I2,..., at 1, It) = (y(t - 1), I). Let H(t) be the set of all t-histories. A 
strategy for player i is a sequence of functions o-i = { o-it}=0 such that: 

(i) oj0 E z(A), and 
(ii) for t > 1, 

i sit: H(t) -> A(Ai) if i c It, 
(sit = a(t-1 otherwise. 

Each strategy profile o- = (o-1,..., on) generates a probability distribution over 
histories in the obvious way, and consequently generates a distribution over the 
sequences of the stage-game payoff vectors. Thus if {gt} is player i's sequence of 
stage-game payoffs, his objective in the repeated game is to maximize the 
expected value of the discounted average payoff 

00 

(1_5) E 5tgit 
t=0 

The equilibrium concept we employ is subgame perfect equilibrium. 
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3. THE FOLK THEOREMS 

3.1. The Deterministic Case 

We first study the deterministic case. That is, we suppose that I, for all 
t = 1, 2, .. ., assumes a particular I, c I with probability 1. We impose the 
following condition. 

CONDITION 2 (Finite Periods of Inaction): For all i c I, there exists an integer t' 
such that: for all t and y(t), i c Ut 1 It, 

Let t=maxiE {tt}. Then, Condition 2 implies that there exists a uniform 
bound t such that every player has at least one opportunity to move in any block 
of t periods. 

THEOREM 1: Suppose Condition 1 (NEU) and Condition 2 (FPI) hold. Then, 
for any payoff vector v in V * *, there exists a discount factor 8 < 1 such that, for all 
8 c (8, 1), v is a subgame-perfect equilibrium (SPE) outcome of the asynchronously 
repeated game F= (G,{It}t=1, 8). 

PROOF: Fix ve V**. Let a = (a1,..., a,,) be a strategy profile such that 
u( a) = V.5 By the NEU condition, we can find payoff vectors xl, x2, ..., xn with 
the following properties: 

(i) x'>> 0 for all i (strict individual rationality). 
(ii) < vi for all i (target payoff domination). 

(iii) xl < xJ for all i and j, i ]j (payoff asymmetry). 
Let agi be such that u(o') =xi. Also recall that a' is such that u (oa') = vi = 0. 

Equilibrium Strategy Profile: 

We will now present the repeated game strategy profile which will support v 
as a SPE outcome. We will first list states, and then describe players' actions for 
each state, and finally describe the transition rule. 

1. States: In the description of the states, we use, in addition to i c I, 
variables c and d, which take on nonnegative integers. Variable c keeps track of 
the severity of crime, while variable d keeps track of the total execution of 
punishment. 

There are (i) state N, which is the normal state; (ii) states M(i, c, d)'s, which 
are the minimaxing states; (iii) states P(i)'s, which are the post-minimaxing 
states; (iv) states ME(i, c)'s; and (v) states MX(i)'s. As will become clear shortly, 
states ME(i, c)'s and MX(i)'s are transition states: State ME(i, c) is a transition 
state from N to M(i, c, 1), and state MX(i) is a transition state from M(i, c, d) 
to P(i). 

5We will assume the availability of public randomization, as is the convention. Consequently we 
will deal only with mixed strategy profiles explicitly. 
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2. Actions: We now describe the action taken by a typical player j E I for 
each state. Note that the description below pertains only to the periods when j 
has an opportunity to move, that is, to t with j E It. (i) State N: Play aj; (ii) 
State M(i, c, d): Play ]ji; (iii) State P(i): Play &j; (iv) State ME(i, c): Play ]ji; (v) 
State MX(i): Play &a!. 

3. Transition Rule:6 The game starts in state N. 
I. When in state N: 
(A) if the observed action profile in the last period, at-1, is such that (a) 

a t- 1 = ai, and (b) a t- 1 = ak for all k = i: Go to state ME(i, 1); 
(B) in all other cases: Stay in state N. 
II. When in state ME(i, c): 
(A) if at =a' i: Go to state M(i,c,1); 
(B) if a t- 1 is such that (a) a ti 1 = a * , (b) a t - 1 = a' when i E It_ and (c) 

ak =ak for all other k E- It 1 \{i}: Go to state ME(i, c + 1); 
(C) if aOt-l is such that (a) afit- 1 =A aoi for i' = i and i' EIt It and (b) 

t 1 fo te - ak =k for all other k E- It_ 1 \ {i'}: Go to state ME(i', 1); 
(D) in all other cases: Stay in state ME(i, c). 
III. When in state M(i, c,d): 
(A) if a t1 is such that (a) aot/- 1 # a', for i' i, and (b) a t- 1 = a' for all 

k = i', i: Go to state ME(i', i);7 

(B) in all other cases: If d < cT (T will be determined shortly), then go to 
state M(i, c, d + 1); otherwise go to state MX(i). 

IV. When in state MX(i): 
(A) if at 1 = oi': Go to state P(i); 
(B) if a t 1 is such that (a) a/it- 1 = &fi, for i' E It_ and (b) a-1 = & for all 

other k E It_ 1 \ {i '}: Go to state ME(i', 1); 
(C) in all other cases: Stay in state MX(i). 
V. When in state P(i): 
(A) if a t- 1 is such that (a) aitt- 1 = #&l , and (b) at 1 = for all k =iA': Go to 

state ME(i', 1 ); 
(B) in all other cases: Stay in state P(i). 
Observe that in the last period of state ME(i, c), players play a i. Similarly, in 

the last period of state MX(i), they play o i. This in particular implies that when 
the game is one of simultaneous moves, state ME(i, c) collapses into state 
M(i, c, 0) and state MX(i) collapses into state P(i). 

Choice of Parameter: 

Let b = maxi maxa ui(a) and w = mini mina ui(a). Since xi>> 0 for all i, we 
can choose 8 > 0 such that xj > e for all i, j. Now choose T to satisfy 

b + 2-(b - w) 8 

)T+ 1 2 

6The transition between the states occurs at the very beginning of each period, before players' 
actions are taken. 

7Note that we ignore the deviation by the initial deviator i. 
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Verification: 

We will first show that no one-shot deviation from the specified strategy by 
any player in any state is profitable for large enough 8. First, let us define 

Vd(k,c + 1) = (1 - 8)b 

+ 8[(1 - t)b + 87+(c+l)T(1 _ 8t)b + 82t+(c+1)TXk] 

Vd(k, c + 1) is the maximal lifetime (discounted average) payoff the deviator, 
player k, gets when the severity of crime is given by c + 1. 

I. State ME(i, c): 
(A) Player i: i gets at least V1 = (1 - 8t)w + 8t+cT(1 _ 8t)w + 52t+cTxi if he 

conforms. Thus, it is better to conform if Vl > Vd(i, c + 1). That is, player i will 
not deviate if 

(1 - 8)b + (1 - (- w) + ( _ t)t+CT(T+?lb - w) 
si '2i 2T(i - 5T 1 ) 

The right-hand side goes to (b + 2t(b - w))/(T + 1) as 8-> 1 by l'Hopital's 
Rule. By (*), we thus have the right-hand side < e for sufficiently large 8. Since 
xl > e by construction, player i will not deviate. 

(B) Player j (j i): j gets at least V2 = (1_ 82t?CT)w + 82t+cTxi if he 
conforms. Thus, it is better to conform if V2> Vd(I, 1), i.e., 

(8 2iXcTX - 82tT? lXj) > (1 - 8)b + 8[(1 - 8t)b + 8+T(1 - 8)b ] 

-(1 _ 82-+cT)W 

Since the right-hand side -> 0 and the left-hand side -> xl -xi > 0 (payoff asym- 
metry) as 8 -> 1, player j will not deviate for sufficiently large 8. 

II. State M(i, c, d): 
(A) Player i: Since i is minimaxed and his action in this state is ignored, he 

has no incentive not to play a11. 
(B) Player j(j = i): j gets at least V3 = (1- t+CT)w + 8t+cTxi if he con- 

forms. Thus, it is better to conform if V3 > Vd(I, 1), i.e., 

(&?cTxJ - 82!?T?Xj) > (1 - 8)b + 8[(1 - 8O)b + 8+T(1 - 8O)b] 

-(1 _ 8t+CT)w. 

Since the right-hand side -> 0 and the left-hand side -> x -xi > 0 (payoff asym- 
metry) as 8 -> 1, player j will not deviate for sufficiently large 8. 

III. State MX(i): 
(A) Player i: It is better to conform if (1 -_ t)w + 8txi > Vd(i, 1), i.e., 

(1 - 8)b + [(1 - 8t)b + 5t+T(1 - 8t)b] - (1 - 8t)w 
Xl 5 t(i _ 5 t+T+lI) 

Since lim8,1 the right-hand side = (b + t(2b - w))/(T + t + 1) < 8/2 by (*) 
(note that w ? 0), player i will not deviate for sufficiently large 8. 
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(B) Player j (j = i): It is better to conform if (1 - 8t)w + 8tx)i > Vd(I, 1), i.e., 

5i- 82?+T+1xj) > (1- 8)b + [(1 - 8?b + '+T(? - ONb] 

-(1- 89w. 

Since the right-hand side > 0 and the left-hand side -> X -xi > 0 (payoff asym- 
metry) as 8 -> 1, player j will not deviate for sufficiently large 8. 

IV. State P(i): 
(A) Player i: It is better to conform if xi > Vd(i, 1). Since xi > (1 - 8)w + 

8txi, the conclusion that i will not deviate for sufficiently large 8 follows directly 
from case III(A). 

(B) Player j (j = i): It is better to conform if Xj > Vd(j, 1). Since xj >xJ > 
Vd(I, 1) by payoff asymmetry and case IV(A), the conclusion that j will not 
deviate for sufficiently large 8 holds. 

V. State N: It is better to conform if v > Vd(i, 1). Since vi > x > Vd(i, 1) by 
target domination and case IV(A), the conclusion that i will not deviate for 
sufficiently large 8 holds. 

We have shown that no player has an incentive to make a one-shot deviation 
from any state for sufficiently large 8. Now, by Condition 2, which ensures that 
the play will move from state MEG, c) to state M(i, c, 1) after t periods at the 
latest, we know that there is no profitable sequence of deviations since we can 
choose 8 large enough to satisfy the inequality in case I(A) for c = 1, ... ., t. In 
other words, it is impossible that a player deviates again and again so that the 
play reaches a level of c in ME(i, c) for which the given 8 may not be sufficient 
to prevent a one-shot deviation. This concludes the proof. Q.E.D. 

We use variable c, which keeps track of the severity of crime, to control the 
deviator's incentive to deviate again in the transition phase ME(i, c): Due to 
inertia, the deviator, say player i, may have an opportunity to move again before 
other players convert to the minimax profile a'i. To make player i conform to 
the prescribed action at', and thus to ensure that the play moves to the 
minimaxing phase M(i,c,l), we need to devise a penal code in which the 
deviator who deviates again in the transition phase ME(i, c) is punished more 
severely (by lengthening the minimaxing phase). Therefore, Abreu's (1988) 
simple penal codes cannot be used here given the way that the rest of the 
equilibrium strategies have been constructed. Note, however, that Abreu-style 
simple penal codes are applied for other players and other phases. That is, the 
same (possibly player-specific) punishment scheme is applied for other players 
and other phases (other than the deviator in the transition phase ME(i, c)), 
regardless of the period and the situation in which the deviation occurs. It 
remains an open question whether Theorem 1 can be proved using stationary 
punishments. 

3.2. The Stochastic Case 

In this subsection, we restore our general framework that the set of players 
who can move in period t, i.e., I, is a random variable. We first observe that 
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Theorem 1 can be applied to this case if we replace Condition 2 by the following 
condition: For all i c I, there exists an integer t' such that Pr(i c 

U s= 1 it+SIt, y(t)) = 1 for all t and y(t). Now, to obtain the Folk Theorem for 
richer classes of asynchronously repeated games, let us define z(t, y(t)) = 

mint{I c U '=1 4Js}. (t, y(t)) is the minimum number of periods in which 
every player has at least one opportunity to move, given the history y(t) at the 
end of period t. We will assume that z(t, y(t))'s are independent and have a 
common finite mean. 

CONDITION 3 (Finite Periods of Inaction in Expectation): (i) z(t, y(t))'s are 
independent, and (ii) E[L(t, y(t))] = t, for all t and y(t). 

Condition 3 imposes a stationary structure on the repeated game. Note also 
that, with a positive probability, some players may have no opportunity to move 
in any finite interval of periods. As a simple example which satisfies the 
condition, consider a two-player game in which only one of the players is 
randomly given an opportunity to move in each period. If each player is given an 
opportunity with equal probability, then E[] E] n =l(n + 1)/2 n= 3 <oo. We 
have the following theorem. 

THEOREM 2: Suppose Condition 1 (NEU) and Condition 3 (FPIE) hold. Then, 
for any payoff vector v in V**, there exists a discount factor 8 < 1- such that, for all 
8 c (8, 1), v is a subgame-perfect equilibrium (SPE) outcome of the asynchronously 
repeated game T = (G, {It}t= 1, 8). 

PROOF: The proof is basically the same as that of Theorem 1: The states, the 
actions, the transition rule, and the choice of parameters are the same. The 
differences arise in the verification part. Let us define 

Wd (k,c + 1) =E[(1 - 5)b + 8[(i - 5ti)b + 5ti+(c+1)T(1 _ 5t2)b 

+ 5tl+t2+(C+ 1)TXk] 

where the expectation is taken over t1, which is the number of periods the play 
stays in ME(k, c + 1), and t2, which is the number of periods the play stays in 
MX(k). Wd(k, c + 1) is the maximal expected lifetime (discounted average) 
payoff the deviator, player k, gets when the severity of crime is given by c + 1. 
Below we will demonstrate how the proof of Theorem 1 could be adapted by 
verifying player i's incentive in state ME(i, c). In ME(i, c), player i gets at least 
W1 =E[(1- 8t3)W + 5t3+cT(1 - 5t4)W + 5t3+t4+cTxi] in expectation if he con- 
forms. In the expression, the expectation is taken over t3, which is the number 
of periods the play stays in ME(i, c), and t4, which is the number of periods the 
play stays in MX(i). Thus, it is better to conform if W1 > Wd(i, c + 1). That is, 
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player i will not deviate if 

(1 - 8)b + 8E[(1 - 8t1)b + 5t1+(c+1)T(1 - 8t2)b] 

-E[(1- t3)W + ct3+cT(4 - t4)W] 
Xi 5 CTE[ 5t3+t4 - 5tl+t2+ T+ 1] 

The right-hand side goes to (b + 2t(b - w))/(T + 1) as 8 > 1 by the Dominated 
Convergence Theorem, l'H6pital's Rule, and Condition 3. By (*) in the proof of 
Theorem 1, we thus have the right-hand side < e for sufficiently large 8. Since 
xl > e by construction, player i will not deviate. The rest of the proof proceeds 
in a similar way. Q.E.D. 

4. DISCUSSION 

As explained in the introduction, our result is closely related to the results of 
Lagunoff and Matsui (1997). They proved that when a pure coordination game is 
repeated so that no two players can move simultaneously at any point in time, 
the only subgame perfect equilibrium payoff is the one that Pareto dominates all 
other payoffs. They prove this uniqueness result for "general asynchronously 
repeated games," which is defined by using semi-Markov processes.8 Our stochas- 
tic environments are restrictive in two ways compared to their environments. 
First, we only study discrete-period environments, not the continuous-time 
environments. Second, we have the FPIE condition (Condition 3), which im- 
poses a certain finite mean restriction on the renewal process together with a 
certain symmetry condition, which roughly requires that the expectation of the 
event that all the states are visited is the same regardless of the state the process 
starts, on the Markov chain of the semi-Markov process. On the other hand, 
while their uniqueness result is only for single-move games, our Folk Theorem 
results hold for general nonsimultaneous-move games, by which we mean 
repeated games in which not all the players move simultaneously in each period, 
as well as for simultaneous-move games. 

Another result worth noting in this context is the Folk Theorem of Dutta 
(1995). Dutta studied stochastic games in which a state variable represents the 
environment of the game and its evolution is determined by the initial condi- 
tions, players' actions, and the transition law. With appropriate assumptions on 
the set F(s) of feasible long-run average payoffs and the long-run average 
minimax value mi(s), together with the standard full dimensionality condition, 
he proved a Folk Theorem. Since asynchronously repeated games may be 
regarded as stochastic games by treating the set 2' as the set S of states, an 
explanation of the differences is in order. First, the framework in this paper 
does not strictly fit into the stochastic games framework because, while Dutta's 
law of motion q is stationary across periods, the random variables {It}= 1 in this 

8A semi-Markov process is a stochastic process that makes transition from state to state in 
accordance with a Markov chain, but in which the amount of time spent in each state before a 
transition occurs is random and follows a renewal process. 
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paper may not be stationary. Next, the set F(s) need not coincide with the 
convex hull V of the set of feasible payoff vectors of the stage game, nor need 
mi(s) coincide with the minimax value v.. Indeed, the set F(s) and the value 
mi(s) in stochastic games framework are affected by the law of motion itself, 
while the set V and the value vi in this paper are not.9 While Dutta imposes 
conditions directly on F(s) and mi(s), we impose conditions on the primitives of 
the model, which gives us a better understanding of the nature of dynamic 
interaction. 

Dept. of Economics, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, Korea 
121-742; kiho@ccs.sogang.ac.kr 

Manuscript received April, 1999; final revision received Januaty, 2000. 

REFERENCES 

ABREU, D. (1988): "On the Theory of Infinitely Repeated Games with Discounting," Economethica, 
56, 383-396. 

ABREU, D., P. K. DUTTA, AND L. SMITH (1994): "The Folk Theorem for Repeated Games: A NEU 
Condition," Econometrica, 62, 939-948. 

DUTTA, P. (1995): "A Folk Theorem for Stochastic Games," Journal of Economic Theoty, 66, 1-32. 
FUDENBERG, D., AND E. MASKIN (1986): "The Folk Theorem for Repeated Games with Discounting 

and Incomplete Information," Econometrica, 54, 533-554. 
LAGUNOFF, R., AND A. MATSUI (1997): "Asynchronous Choice in Repeated Coordination Games," 

Econometrica, 65, 1467-1477. 
MASKIN, E., AND J. TIROLE (1988): "A Theory of Dynamic Oligopoly, I: Overview and Quantity 

Competition with Large Fixed Costs," Econometrica, 56, 549-569. 

9For example, if one player is committed to a particular action forever, then F(s) loses one 
dimension and mi(s) is affected correspondingly. Note, however, that Dutta's results are consistent 
with ours when reduced to a common framework. 


	Article Contents
	p. 191
	p. 192
	p. 193
	p. 194
	p. 195
	p. 196
	p. 197
	p. 198
	p. 199
	p. 200

	Issue Table of Contents
	Econometrica, Vol. 69, No. 1 (Jan., 2001), pp. 1-263
	Front Matter
	Corporate Governance [pp.  1 - 35]
	Efficiency of Large Private Value Auctions [pp.  37 - 68]
	Long-Term Debt and Optimal Policy in the Fiscal Theory of the Price Level [pp.  69 - 116]
	Nonlinear Regressions with Integrated Time Series [pp.  117 - 161]
	Fast Equilibrium Selection by Rational Players Living in a Changing World [pp.  163 - 189]
	A Folk Theorem for Asynchronously Repeated Games [pp.  191 - 200]
	Notes and Comments
	Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design [pp.  201 - 209]
	The Asymptotic Distribution of Unit Root Tests of Unstable Autoregressive Processes [pp.  211 - 219]
	Constructing Instruments for Regressions with Measurement Error When No Additional Data Are Available: Comment [pp.  221 - 222]

	Announcements [pp.  223 - 229]
	News Notes [pp.  231 - 233]
	The Econometric Society Annual Reports: 2000
	Report of the Secretary [pp.  235 - 243]
	Report of the Treasurer [pp.  245 - 252]
	Report of the Editors [pp.  253 - 255]

	Back Matter [pp.  256 - 263]



