
Abstract. We study the effect of asynchronous choice structure on the possi-
bility of cooperation in repeated strategic situations. We model the strategic
situations as asynchronously repeated games, and define two notions of effec-
tive minimax value. We show that the order of players’ moves generally affects
the effective minimax value of the asynchronously repeated game in significant
ways, but the order of moves becomes irrelevant when the stage game satisfies
the non-equivalent utilities (NEU) condition.We then prove the Folk Theorem
that a payoff vector can be supported as a subgame perfect equilibrium out-
come with correlation device if and only if it dominates the effective minimax
value. These results, in particular, imply both Lagunoff and Matsui’s (1997)
result and Yoon (2001)’s result on asynchronously repeated games.

Key words: Effective minimax value, folk theorem, asynchronously repeated
games

1. Introduction

Asynchronous choice structure in repeated strategic situations may affect the
possibility of cooperation in significant ways. When players in a repeated
game make asynchronous choices, that is, when players cannot always change
their actions simultaneously in each period, it is quite plausible that they can
coordinate on some particular actions via short-run commitment or inertia to
render unfavorable outcomes infeasible. Indeed, Lagunoff and Matsui (1997)
showed that, when a pure coordination game is repeated in a way that only
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one player can move in each period, the only subgame perfect equilibrium
payoff with correlation device (when players are sufficiently patient) is the one
that Pareto dominates all other payoffs.

On the other hand, a recent paper by Yoon (2001) for asynchronously
repeated games proves the Folk Theorem that every feasible and strictly
individually rational payoff vector can be supported as a subgame perfect
equilibrium outcome with correlation device as long as the non-equivalent
utilities (NEU) condition together with the finite periods of inaction (FPI)
condition (or more generally, the finite periods of inaction in expectation
(FPIE) condition for stochastic environments) is satisfied. Since the FPI
condition (or the FPIE condition), which requires that the length of periods
during which every player has at least one opportunity to change his action is
finite (or finite in expectation), only imposes a normality condition for a re-
peated strategic situation,1 the divergence of Yoon’s result from Lagunoff and
Matsui’s hinges solely on the NEU condition. Recall that the NEU condition
precludes the existence of common interests between any two players: The
NEU condition requires that no pair of players have equivalent payoffs.

In this paper, we pursue this line of research further to unify the existing
results. To state the main result informally, we introduce two notions of
effective minimax value for repeated games which explicitly incorporate the
order of moves, and (essentially) prove the Folk Theorem that a payoff vector
can be supported as a subgame perfect equilibrium outcome with correlation
device if and only if it dominates the effective minimax value of the repeated
game.2 This result, therefore, dispenses with the NEU condition required for
the Folk Theorem in Yoon (2001). Recall that the effective minimax value,
which was first introduced in Wen (1994), for a stage game is a generalization
of the standard minimax value in that it takes equivalent utilities among
players into account.3 We, in turn, generalize the effective minimax value to
asynchronously repeated games (with a stationarity condition imposed).4

We first determine the reservation value, i.e., the minimum level of payoffs
that a player can guarantee to himself in an asynchronously repeated game.
We introduce two notions of effective minimax value, the upper effective
minimax value and the lower effective minimax value. We state in Theorem 1
the properties of these effective minimax values in relation to the minimax
value of the stage game. We first find that the order of moves affects the
effective minimax values of the repeated game in significant ways. However,
when the stage game satisfies the NEU condition, it becomes irrelevant in the
sense that the same upper effective minimax value obtains regardless of the

1 If a repeated game does not satisfy the FPI condition or the FPIE condition, then it is not a
repeated game in a true sense. See Yoon (2001) for precise definitions.
2 As will become clear in the next section, this paper deals with the infinitely repeated games with
discounting as opposed to no discounting, and the solution concept employed is subgame perfect
equilibrium with correlation device as opposed to Nash equilibrium.
3 See the next section for a precise definition of these concepts.
4 In a related paper, Wen (2002a) generalizes the effective minimax value to repeated sequential
games, where sequential games are a special class of extensive form games in which disjoint
subsets of players move sequentially. Payoffs are realized at the end of one turn of players’ moves
in sequential games. In contrast, payoffs are realized at the end of each period in asynchronously
repeated games, which makes the job of defining a proper effective minimax value challenging.
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order of moves. Moreover, the upper effective minimax value of the repeated
game coincides with the effective minimax value of the stage game (which in
turn coincides with the standard minimax value). We also find that, if the
repeated game is a simultaneous-move game so that every player can move
in each period, then both the upper and the lower minimax values of the
repeated game coincide with the effective minimax value of the stage game.

We next show that the effective minimax values are meaningful bounds for
the Folk Theorem. We prove in Theorem 2 that any subgame perfect equi-
librium payoff with correlation device in an asynchronously repeated game
dominates the lower effective minimax value. This result, in particular, im-
plies the result of Lagunoff and Matsui (1997) since it can be easily shown
that the lower effective minimax value of the repeated game when the stage
game is a pure coordination game is players’ maximum possible payoff. In
Theorem 3, we prove the Folk Theorem that any payoff vector can be sup-
ported as a subgame perfect equilibrium outcome with correlation device as
long as it dominates the upper effective minimax value of the repeated game.

The paper is organized as follows. We describe asynchronously repeated
games in the next section. We define two notions of effective minimax value
of the repeated game, and then state and prove main results in Section 3.
Finally, we discuss some limitations of the present paper and directions for
future research in Section 4.

2. The model

2.1. The stage game

Let G ¼ I ; ðAiÞni¼1; ðuiÞni¼1
� �

denote a strategic form game where I ¼ f1; . . . ; ng
is the set of players, Ai is the set of actions for player i, and ui is the stage game
payoff function from A ¼ �n

i¼1Ai to R. The payoff vector u ¼ ðu1; . . . ; unÞ is a
function from A to Rn. We will assume that Ai’s are compact sets and that the
ui’s are continuous. The set Ai may be interpreted as the (either finite or
infinite) set of pure actions. We note that many game-theoretic models of
application involve continuous action variables and that players in these
models use only pure actions, not probability distributions over the contin-
uous variables. See, for example, Maskin and Tirole (1988), where an asyn-
chronously repeated game of oligopoly is studied. Alternatively, Ai may be
interpreted as the set of mixed actions, i.e., probability distributions, defined
over the underlying finite set of pure actions.5 In the latter interpretation, it is
assumed that mixed actions are observable and implementable as they are.6

5 That is, Ai ¼ DðBiÞ where Bi is a finite set of actions.
6 Fudenberg and Maskin (1986) and Abreu, Dutta, and Smith (1994) for infinitely repeated
games with discounting show that it is with no loss of generality to treat the unobservable mixed
actions virtually as the observable pure actions. On the other hand, Benoit and Krishna (1985) for
finitely repeated games prove the Folk Theorem only for the observable pure actions case, which
is later extended in Gossner (1995) to the unobservable mixed actions case. In this paper, we
follow Benoit and Krishna (1985) in preferring the pure actions interpretation, while leaving the
unobservable mixed actions case for future research. Note that, under the mixed actions
interpretation, one needs to construct repeated game strategies and also attain the target payoff
vector based only on the histories of pure actions (i.e., on the realizations of mixed actions),
without the assumption of ex post observability of mixed actions.
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Following the convention, let V be the convex hull of the set of feasible payoff
vectors fuðaÞ : a 2 Ag.

Let a�i denote an action profile of player i’s opponents (that is, players in
I n fig). More generally, for a given subset J of players, let aJ denote an
action profile of players in J . Player i’s standard minimax value is defined as

vi ¼ min
a�i

max
ai

uiðai; a�iÞ:

We call ðv1; . . . ; vnÞ the standard minimax point of G. A payoff vector
v ¼ ðv1; . . . ; vnÞ is called feasible and strictly individually rational if v 2 V and
vi > vi for all i 2 I .

Following Abreu, Dutta and Smith (1994), we now define an equivalence
relation on I as follows: We write i � j and say player i and player j have
equivalent utilities if there exist cij and dij > 0 such that uiðaÞ ¼ cij þ dijujðaÞ
for all a 2 A. The equivalence relation� induces a partition, say E, of the set of
players, and we use EðiÞ to denote amember of E such that EðiÞ ¼ fj 2 I ji � jg.
That is, EðiÞ is the set of players who have equivalent utilities. Player i’s effective
minimax value, which was first introduced in Wen (1994), is defined as

ve
i ¼ min

a
max
j2EðiÞ

max
a0j

uiða0j; a�jÞ:

We call ðve
1; . . . ; ve

nÞ the effective minimax point of G.
The effective minimax value is not less than the standard minimax value,

i.e., ve
i � vi. In addition, when the nonequivalent utilities (NEU) condition of

Abreu, Dutta, and Smith (1994) holds, that is, EðiÞ ¼ fig for all i 2 I , the
effective minimax value is equal to the standard minimax value.

2.2. Asynchronously repeated games

We now describe asynchronously repeated games. The stage game is repeated
in periods t ¼ 0; 1; . . .. In period 0, all players choose their respective actions
a ¼ ða1; . . . ; anÞ. In period t � 1, a subset It � I of players (It may be ;) are
able to change their actions aIt ¼ ajIt

. In asynchronously repeated games, It is
a realization of the 2I -valued random variable ~I t whose distribution is a
function of the sequence ðI1; . . . ; It�1Þ of past realizations of ~Is’s,
s ¼ 1; . . . ; t � 1, and the sequence ða0; . . . ; at�1Þ of past action profiles. We
impose in this paper a stationarity condition on asynchronously repeated
games: There exists �t such that

(i)
S�t

t¼1 It ¼ I , and
(ii) Im�tþs ¼ Is for all m ¼ 1; 2; . . . and s ¼ 1; . . . ;�t.

In addition to (i) and (ii), we require that (iii) there does not exist t0 < �t which
satisfies (i) and (ii). That is, �t is the minimum number of periods which
satisfies (i) and (ii). In other words, we assume that the same sequence of
moves is repeated in every �t periods.7 We note that the sequence ðI1; . . . ; I�tÞ

7 This stationarity condition implies the finite periods of inaction (FPI) condition of Yoon
(2001). We admit that the current condition is somewhat restrictive. We remark, however, that
some form of stationarity condition should be imposed on the asynchronously repeated game if
we want to obtain meaningful relationships among various minimax values.
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need not partition I . As a concrete example, the game in which I ¼ f1; 2; 3g,
�t ¼ 3, I3mþ1 ¼ f1; 2g, I3mþ2 ¼ f2; 3g, and I3mþ3 ¼ f1; 3g is an asynchronously
repeated game which satisfies the stationarity condition. This framework
includes many interesting repeated strategic situations.

Example 1. (Simultaneous-move games) �t ¼ 1 and I1 ¼ I . This is the envi-
ronment studied in traditional repeated games, as in Fudenberg and Maskin
(1986) or Abreu, Dutta, and Smith (1994).

Example 2. (Round-robin-move games) �t ¼ n and It ¼ ftg for t ¼ 1; . . . ; n.
These games canonically represent alternating-move games studied in Lagu-
noff and Matsui (1997).

In what follows, we will call an asynchronously repeated game that sat-
isfies the stationarity condition simply as a repeated game and denote it by a
tuple C ¼ ðG; fItg

�t
t¼1; dÞ, where d is the common discount factor.

2.3. Strategies

A history at the beginning of period t, a t-history, is hðtÞ ¼ ða0; a1; . . . ; at�1Þ.
Let HðtÞ be the set of all t-histories. A strategy for player i is a sequence of
functions ri ¼ frt

ig
1
t¼0 such that

(1) r0
i 2 Ai, and

(2) For t � 1,

rt
i : HðtÞ ! Ai if i 2 It,

rt
i ¼ at�1

i otherwise.

�

Each strategy profile r ¼ ðr1; . . . ; rnÞ generates a distribution over the
sequences of the stage-game payoff vectors. Thus if fgt

ig is player i’s sequence
of stage-game payoffs, his objective in the repeated game is to maximize
the expected value of the discounted average payoff

ð1� dÞ
X1

t¼0
dtgt

i:

The equilibrium concept we employ is subgame perfect equilibrium with
correlation device.

3. The effective minimax value of asynchronously repeated games

Suppose the NEU condition is satisfied. The Folk Theorem of Yoon (2001)
proves that any feasible and strictly individually rational payoff vector can be
supported as a subgame perfect equilibrium outcome with correlation device
of an asynchronously repeated game as long as the FPI condition (or the
FPIE condition) is met, regardless of the order of moves. We will show in the
present section that, if the NEU condition is not satisfied, then the exact order
of moves becomes significant in determining the set of subgame perfect
equilibrium payoff vectors with correlation device.
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Consider a repeated game C ¼ ðG; fItg
�t
t¼1; dÞ. We define a move pattern

for C as a sequence of consecutive subsets of players, of length �t. By the
stationarity condition, there are exactly �t possible move patterns in C,
namely, ðI1; . . . ; I�tÞ, ðI2; . . . ; I�t; I1Þ, . . . ; ðIt; Itþ1; . . . ; I�t; I1; . . . ; It�1Þ; . . ., and
ðI�t; I1; . . . ; I�t�1Þ. Let I be the collection of all move patterns and fix a move
pattern ðIð1Þ; . . . ; Ið�tÞÞ 2 I. We define, for each k 2 f1; . . . ;�tg,8

Ib
k ¼

[k�1

k0¼1
Iðk0Þ; Ia

k ¼
[�t

k0¼kþ1
Iðk0Þ:

Ib
k (Ia

k , respectively) is the set of players who move before (after, respectively)
step k in a given move pattern ðIð1Þ; . . . ; Ið�tÞÞ 2 I. Player i’s effective mini-
max value in C given a move pattern ðIð1Þ; . . . ; Ið�tÞÞ is defined recursively as
follows.

In the following description, we use the notation uiðaJ ; aJ 0 Þ for subsets J
and J 0 of players, with J [ J 0 ¼ I . This is player i’s payoff when players in J 0

choose the action profile aJ 0 and players in J choose the action profile aJ .
When J and J 0 are not disjoint, the convention is that the corresponding
components of aJ override those of aJ 0 . As a concrete example, consider the
case when I ¼ f1; 2g, J ¼ f1g, and J 0 ¼ f1; 2g. Let aJ ¼ a1 and aJ 0 ¼ ðâ1; â2Þ.
Then, aJ ¼ a1 overrides the first element of aJ 0 ¼ ðâ1; â2Þ. We thus have
uiðaJ ; aJ 0 Þ ¼ uiða1; â2Þ.

First, in step �t and given aIb
�t
, consider the following minimax problem

min
aIð�tÞ

max
j2EðiÞ\Ið�tÞ

max
a0j

uiðaIð�tÞ; aIb
�t
Þ:

This problem finds an action profile aIð�tÞ for players in Ið�tÞ given the action
profile aIb

�t
for players in Ib

�t . It is possible that the two sets Ið�tÞ and Ib
�t are not

disjoint. In this case, the corresponding components of action profile aIð�tÞ
override those of aIb

�t
, so that we will always get an action profile of dimension jI j

as an argument of the payoff function uið�Þ. The way we find a solution profile
for Ið�tÞ is essentially the same as that of finding an action profile that achieves
the effective minimax value of the stage game: Find an aIð�tÞ that minimizes uið�Þ
while allowing players in EðiÞ \ Ið�tÞ to choose an action that maximizes uið�Þ.
The only difference is that we change actions of players in Ið�tÞ while keeping
others’ actions fixed. This is so because only players in Ið�tÞ can move in step �t.
By altering aIb

�t
, we can get a function bi;�t : �j2Ib

�t
Aj ! �j2Ið�tÞAj, which assigns an

action profile for Ið�tÞ for each action profile of Ib
�t .

Next, in step ð�t � 1Þ and given aIb
�t�1

and bi;�tð�Þ, consider
min
aIð�t�1Þ

max
j2EðiÞ\Ið�t�1Þ

max
a0j

uiðbi;�tðaIð�t�1Þ; aIb
�t�1
Þ; aIð�t�1Þ; aIb

�t�1
Þ:

This problem finds an action profile aIð�t�1Þ for players in Ið�t � 1Þ given the
action profile aIb

�t�1
for players in Ib

�t�1 and the function bi;�tð�Þ found in

the previous step. Here again, if two sets Ið�t � 1Þ and Ib
�t�1 are not disjoint then

the corresponding components of action profile aIð�t�1Þ override those of aIb
�t�1
.

Note that the resulting action profile, denoted by ðaIð�t�1Þ; aIb
�t�1
Þ and which

8 The backward sequential formulation of minimax problems below is adopted from Wen
(2002a)’s formulation for sequential games.
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becomes an action profile aIb
�t
for step �t, may not be of dimension jI j. We now

combine this profile with bi;�tðaIð�t�1Þ; aIb
�t�1
Þ to produce an action profile of

dimension jI j, where components of bi;�tðaIð�t�1Þ; aIb
�t�1
Þ override those of

ðaIð�t�1Þ; aIb
�t�1
Þ if necessary. By altering aIb

�t�1
, we can get a function

bi;�t�1 : �j2Ib
�t�1

Aj ! �j2Ið�t�1Þ[Ið�tÞAj, which assigns an action profile for

Ið�t � 1Þ [ Ið�tÞ for each action profile of Ib
�t�1.

Generally, in step k (1 � k � �t � 1) and given aIb
k
and bi;kþ1ð�Þ, consider the

following minimax problem

min
aIðkÞ

max
j2EðiÞ\IðkÞ

max
a0j

uiðbi;kþ1ðaIðkÞ; aIb
k
Þ; aIðkÞ; aIb

k
Þ:

This problem finds an action profile aIðkÞ for players in IðkÞ given the action
profile aIb

k
for players in Ib

k and the function bi;kþ1ð�Þ found in the previous
step. We proceed as before. By altering aIb

k
, we can get a function

bi;k : �j2Ib
k
Aj ! �j2IðkÞ[Ia

k
Aj, which assigns an action profile for IðkÞ [ Ia

k
for each action profile of Ib

k .
We observe that the value of minimax problem in step k is not higher than

that in step k þ 1. Formally, we have:

Lemma 1. For any given move pattern ðIð1Þ; . . . ; Ið�tÞÞ 2 I and for any aIb
k
and

bi;kþ1ð�Þðk ¼ 1; . . . ;�t � 1Þ, we have

uiðbi;kðaIb
k
Þ; aIb

k
Þ � uiðbi;kþ1ðaIb

kþ1
Þ; aIb

kþ1
Þ

where aIb
kþ1
¼ ð~aIðkÞ; aIb

k
Þ and ~aIðkÞ is a solution to step k minimax problem given

aIb
k
and bi;kþ1ð�Þ.

Proof: We have

uiðbi;kðaIb
k
Þ; aIb

k
Þ ¼ min

aIðkÞ
max

j2EðiÞ\IðkÞ
max

a0j
uiðbi;kþ1ðaIðkÞ; aIb

k
Þ; aIðkÞ; aIb

k
Þ

� max
j2EðiÞ\IðkÞ

max
a0j

uiðbi;kþ1ðaIðkÞ; aIb
k
Þ; aIðkÞ; aIb

k
Þ

for all aIb
k
and aIðkÞ. Let âIðkÞ be a solution to the last maximax problem. (That

is, âIðkÞ is obtained from aIðkÞ by replacing aj with a maximizer âj.) Then,

uiðbi;kðaIb
k
Þ; aIb

k
Þ � uiðbi;kþ1ðâIðkÞ; aIb

k
Þ; âIðkÞ; aIb

k
Þ:

Since this inequality holds for all aIb
k
and aIðkÞ, we are done. j

Player i’s effective minimax value of the repeated game C given a move
pattern ðIð1Þ; . . . ; Ið�tÞÞ, which is denoted by re

i ðIð1Þ; . . . ; Ið�tÞÞ, is the value of
the previous minimax problem applied to step 1. We introduce two notions of
effective minimax value of C.

Definition 1. (Upper effective minimax value) Player i’s upper effective mini-
max value of the repeated game C is defined as

re
i ¼ max

I
re

i ðIð1Þ; . . . ; Ið�tÞÞ;

and we call ðre
1; . . . ; re

nÞ the upper effective minimax point of C.
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Definition 2. (Lower effective minimax value) Player i’s lower effective mini-
max value of the repeated game C is defined as

se
i ¼ min

I
re

i ðIð1Þ; . . . ; Ið�tÞÞ;

and we call ðse
1; . . . ; se

nÞ the lower effective minimax point of C.
Since there are only a finite number of move patterns in C, these two values

are well-defined and obviously se
i � re

i . We state in Theorem 1 the relationship
among different minimax values defined so far, i.e., vi, ve

i , re
i , and se

i .

Theorem 1. (i) We have re
i � ve

i � vi for any repeated game C ¼ ðG; fItg
�t
t¼1; dÞ.

(ii) If the stage game G satisfies the NEU condition, then re
i remains constant

across all repeated games C ¼ ðG; fItg
�t
t¼1; dÞ with fixed G. Moreover,

re
i ¼ ve

i ¼ vi ¼ mina�i maxai uiðai; a�iÞ.
(iii) If the repeated game is a simultaneous-move game, i.e., �t ¼ 1, then
re

i ¼ se
i ¼ ve

i � vi.

Proof: (i) It follows almost immediately from the definition.
(ii) Consider a move pattern ðIð1Þ; . . . ; Ið�tÞÞ such that i 2 Ið�tÞ. Since the stage

game satisfies the NEU condition, we have re
i ¼ re

i ðIð1Þ; . . . ; Ið�tÞÞ and,
moreover, this is equal to ve

i ¼ vi ¼ mina�i maxai uiðai; a�iÞ for any re-
peated game C.

(iii) Obvious. j

Theorem 1(ii) states that, as long as the NEU condition is satisfied, the exact
order of moves is irrelevant in the sense that the same upper effective minimax
value obtains regardless of the order of moves. (Note that we do not use d in
defining the minimax values. Hence, these values are independent of d.) In
particular, the upper effective minimax value of the repeated game is equal to
the minimax value of the stage game. It is also not hard to see that, if the
NEU condition is satisfied and the repeated game is a single-move game,9

then the lower effective minimax value of the repeated game is in fact the
maximin value maxai mina�i uiðai; a�iÞ of the stage game. In addition, Theo-
rem 1(ii)–(iii) together imply that re

i ¼ ve
i ¼ se

i ¼ vi when the NEU condition is
satisfied and the repeated game is a simultaneous-move game. On the other
hand, when the NEU condition is not satisfied and the repeated game is not a
simultaneous-move game, we may have re

i > ve
i and even se

i > ve
i .

Example 3. (Pure coordination game) Consider the following pure coordi-
nation game, where player 1 chooses rows and player 2 chooses columns.10

L R
U 3; 3 1; 1
D 2; 2 0; 0

Then, v1 ¼ 1 and an action profile that achieves v1 is (U,R), while ve
1 ¼ 2 and

an action profile that achieves ve
1 is (D,L). When players take alternating

9 A single-move game is an asynchronously repeated game in which It is a singleton for all t.
10 Note that all the players have equivalent utilities in pure coordination games.
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moves, that is, when the game is a repeated game in which �t ¼ 2 and It ¼ ftg
for t ¼ 1; 2, we have re

1 ¼ se
1 ¼ 3.

More generally, we have:

Proposition 1. Consider a pure coordination game played by n players where
uiðaÞ ¼ ujðaÞ for all i; j 2 I and a 2 A, and let u� ¼ maxa2A uiðaÞ for all i 2 I be
the highest payoff each player can get in this game. If the repeated game is a
single-move game, i.e., if only one player can move in each period, then
re

i ¼ se
i ¼ u� for all i 2 I .

Proof: Obvious. j

We next provide an example which shows that, when the NEU condition
is not satisfied, then the order of moves may become important in deter-
mining the effective minimax values.

Example 4. (3 player game) Consider the following 3 player game, where
player 1 chooses rows, player 2 chooses columns, and player 3 chooses
matrices. In this example, we assume that mixed actions are observable and
implementable.

L R L R
U 3; 3; 0 1; 1; 0 U 0; 0; 0 2; 2; 0
D 2; 2; 0 0; 0; 0 D 1; 1; 0 3; 3; 0

A B

Then, v1 ¼ 1 and an action profile that achieves v1 is (U,R,A), while ve
1 ¼ 1:5

and an action profile that achieves ve
1 is (

1
2U+1

2D,12L+
1
2R, 1

2A+1
2B). When the

repeated game is such that �t ¼ 2, I1 ¼ f1; 2g, and I2 ¼ f3g, we have
re
1 ¼ re

1ðf3g; f1; 2gÞ ¼ 1:5 and se
1 ¼ re

1ðf1; 2g; f3gÞ ¼ 1. On the other hand,
when the repeated game is such that �t ¼ 2, I1 ¼ f1; 3g, and I2 ¼ f2g, we have
re
1 ¼ se

1 ¼ 1:5.
Note that players 1 and 2 have equivalent utilities in this example. There-

fore, when the repeated game is such that I1 ¼ f1; 3g, and I2 ¼ f2g, players 1
and 2 can coordinate over time to attain a value of 1.5 whatever the move
pattern is. Moreover, this value is clearly equal to the effective minimax value
of the stage game. On the other hand, when the repeated game is such that
I1 ¼ f1; 2g, and I2 ¼ f3g, they can only attain their joint maximin value of 1
under the move pattern ðf1; 2g; f3gÞ since they cannot coordinate over time.11

What is the reservation value for player i in a repeated game
C ¼ ðG; fItg

�t
t¼1; dÞ, that is, the minimum level of payoffs that player i can

guarantee to himself in C when he correctly anticipates others’ action choices?

11 As the example reveals, what really matters in determining the effective minimax values is the
order of final moves. In general, the effective minimax value given a move pattern depends only
on the following parameter. Let ti be the last time in the move pattern that player i may change his
action, namely, ti ¼ maxftji 2 IðtÞg. Then the effective minimax value given one move pattern is
equal to the effective minimax value given another move pattern as long as the order of ti’s are the
same across two move patterns. This is so since the actions chosen in later periods can always
override the ones before. I thank a referee for pointing out this observation.
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The natural candidate is of course the upper minimax value re
i since it cor-

responds to the minimax value of the stage game when the NEU condition is
satisfied. (See Theorem 1(ii) above.) We show, however, that the non-simul-
taneity of the moves in a repeated game may hold a player’s payoff below re

i .

Example 5. (Reservation value) Consider the following two player game,
where player 1 chooses rows and player 2 chooses columns. In this example,
we will restrict the attention to pure actions for ease of presentation.

L R
U a; 0 0; 0
D 0; 0 a; 0

When players take alternating moves and a > 0, we have re
1 ¼ re

1ðf2g; f1gÞ ¼
mina�i maxai uiðai; a�iÞ ¼ a and se

1 ¼ re
1ðf1g; f2gÞ ¼ maxai mina�i uiðai; a�iÞ ¼

0. Suppose now that player 2 chooses R when player 1 chooses U in the
previous period, and player 2 chooses L when player 1 chooses D in the
previous period. Even if player 1 correctly anticipates his opponent’s action
choices, his maximum payoff against player 2’s strategy is a=2 since he cannot
move in periods player 2 moves. In Theorem 2 below, we show that a lower
bound for the right reservation value in a repeated game is the lower effective
minimax value se

i .

Theorem 2. For any � > 0, there exists a discount factor d < 1 such that, for all
d 2 ðd; 1Þ, player i’s subgame perfect equilibrium payoffs with correlation device
in the repeated game C ¼ ðG; fItg

�t
t¼1; dÞ are not less than se

i � �.

Proof: Define wi ¼ mina uiðaÞ, and let Li be the infimum of player i’s subgame
perfect equilibrium continuation payoffs with correlation device in C. Since Li
is the infimum, there exist a period t and player i’s equilibrium continuation
payoff in t denoted by V i

t such that Li > V t
i � g for any g > 0. Now, consider a

move pattern which ends in period t, that is, ðIð1Þ; . . . ; Ið�tÞÞ with Ið�tÞ ¼ It.
12

We first observe that, for any aIb
�t
in step �t of the given move pattern and for

any d 2 ð0; 1Þ,
V t

i � ð1� dÞmin
aIð�tÞ

max
j2EðiÞ\Ið�tÞ

max
a0j

uiðaIð�tÞ; aIb
�t
Þ þ dLi;

by the equivalent utilities relation. Hence, we get

Li > min
aIð�tÞ

max
j2EðiÞ\Ið�tÞ

max
a0j

uiðaIð�tÞ; aIb
�t
Þ � g

1� d
:

Since this inequality holds for any g > 0, we obtain

Li � min
aIð�tÞ

max
j2EðiÞ\Ið�tÞ

max
a0j

uiðaIð�tÞ; aIb
�t
Þ ¼ uiðbi;�tðaIb

�t
Þ; aIb

�t
Þ:

Next, for any aIb
�t�1

in step ð�t � 1Þ of the given move pattern and for any

d 2 ð0; 1Þ, player i’s continuation payoffs are not less than

12 We assume that t � �t in the proof. Observe that it is easier to prove when t < �t.
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ð1� dÞwi þ d½ð1� dÞmin
aIð�t�1Þ

max
j2EðiÞ\Ið�t�1Þ

max
a0j

uiðbi;�tðaIb
�t
Þ; aIð�t�1Þ; aIb

�t�1
Þ þ dLi	

� ð1� dÞwi þ d½ð1� dÞuiðbi;�t�1ðaIb
�t�1
Þ; aIb

�t�1
Þ þ duiðbi;�tðaIb

�t
Þ; aIb

�t
Þ	

� ð1� dÞwi þ duiðbi;�t�1ðaIb
�t�1
Þ; aIb

�t�1
Þ;

where the last inequality follows from Lemma 1. Generally, for any aIb
k
in step

k of the given move pattern and for any d 2 ð0; 1Þ, player i’s continuation
payoffs are not less than

ð1�d�t�kÞwiþd�t�k½ð1�dÞmin
aIðkÞ

max
j2EðiÞ\IðkÞ

max
a0j

uiðbi;kþ1ðaIðkÞ;aIb
k
Þ;aIðkÞ;aIb

k
ÞþdLi	

� ð1�d�t�kÞwiþd�t�k½ð1�dÞuiðbi;kðaIb
k
Þ;aIb

k
Þþduiðbi;�tðaIb

�t
Þ;aIb

�t
Þ	

� ð1�d�t�kÞwiþd�t�kuiðbi;kðaIb
k
Þ;aIb

k
Þ;

where the last inequality follows from applying Lemma 1 repeatedly.
Therefore, player i’s continuation payoffs in step 1 of the given move

pattern are not less than ð1� d�t�1Þwi þ d�t�1re
i ðIð1Þ; . . . ; Ið�tÞÞ �

ð1� d�t�1Þwi þ d�t�1se
i by the definition of the lower effective minimax value.

Now, for any given � > 0, we get the desired result by taking d to satisfy
ð1� d�t�1Þwi þ d�t�1se

i > se
i � �. j

Theorem 2 shows that any subgame perfect equilibrium payoff vector with
correlation device in C essentially dominates the lower effective minimax
point ðse

1; . . . ; se
nÞ of the repeated game C. This theorem, in particular, implies

the result of Lagunoff and Matsui (1997) which shows that the only subgame
perfect equilibrium payoff with correlation device in a single-move pure
coordination game (when the players are sufficiently patient) is the one which
Pareto-dominates all other payoffs, i.e., u�. (See Proposition 1.) We next show
that any payoff vector which strictly dominates the upper effective minimax
point ðre

1; . . . ; re
nÞ is a subgame perfect equilibrium payoff vector with corre-

lation device. We omit the proof since it is a minor modification of the
corresponding proof in Yoon (2001): One needs only to pay extra attention to
equivalent utilities.

Theorem 3. (Folk Theorem) For any payoff vector v 2 V which strictly dom-
inates the upper effective minimax point ðre

1; . . . ; re
nÞ of the repeated game

C ¼ ðG; fItg
�t
t¼1; dÞ, there exists a discount factor d < 1 such that, for all

d 2 ðd; 1Þ, v is a subgame perfect equilibrium outcome with correlation device of
C.

Remark: This theorem is a characterization result. It is worthwhile to note
that some games do not have a payoff vector that satisfies the theorem’s
assumption. See Example 3.

4. Conclusion

We have introduced two notions of effective minimax value for repeated
games, the upper effective minimax value and the lower effective minimax
value, in this paper. These values are in close relation with the standard and
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effective minimax values of the stage game: (i) When the NEU condition is
satisfied, the upper effective minimax value coincides with the effective
minimax value of the stage game (which in turn coincides with the standard
minimax value), and (ii) When the repeated game is a simultaneous-move
game, both the upper and the lower effective minimax values coincide with
the effective minimax value of the stage game. Generally, however, asyn-
chronous move structure affects both the upper and lower effective minimax
values in significant ways.

The main results of the present paper established that these values con-
stitute two cut-off levels of payoffs for the Folk Theorem: Any subgame
perfect equilibrium payoff with correlation device dominates the lower
effective minimax point, and any payoff that dominates the upper effective
minimax point can be supported as a subgame perfect equilibrium outcome
with correlation device.

We could not determine the exact cut-off level for the Folk Theorem,
however. In other words, we were not able to establish which payoffs between
the upper and lower effective minimax values can be supported as subgame
perfect equilibrium outcomes with correlation device.13 The exact cut-off le-
vel, if it could be satisfactorily characterized, would reflect the move patterns
as well as the payoff structure of the stage game. We leave it as an agenda for
future research, only noting that Example 5 may shed some light on it.14 It is
also worthwhile to extend the results to stochastic environments satisfying the
FPIE condition, and to the unobservable mixed actions case.
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