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1. INTRODUCTION

Mechanism design has been very successful both in theory and in applica-
tions. Insightful results have been discovered and then applied to the practical
tasks of nonlinear pricing, auctions, market design, public good provision, tax-
ation, regulation, etc. While traditional mechanism design literature examines
static environments, the research on dynamic mechanism design is flourishing
in recent years. Indeed, many real world problems involve long-term relation-
ships over time, and thus dynamic mechanism design would provide new tools as
well as implications that the static mechanism design could not offer. There are
several excellent surveys on dynamic mechanism design, including Bergemann
and Said (2011), Vohra (2012), Bergemann and Pavan (2015), Pavan (2017), and
Bergemann and Välimäki (2019).

The purpose of this paper is to introduce dynamic mechanism design in an
elementary fashion. It is elementary since, first of all, it presents simple frame-
works to analyze, and secondly and more importantly, it does not require ad-
vanced knowledge for the analysis. In particular, we demonstrate that many
results and techniques of static mechanism design can be straightforwardly ex-
tended and adapted to the analysis of dynamic settings. Hence, readers with
some static mechanism design background but little acquaintance with dynamic
mechanism design would find this introduction easy to follow.

We study dynamic settings in which players’ private information stochasti-
cally evolves over time and decisions are made in each period.1 The mechanism
design literature can be classified into two broad categories: The first one is con-
cerned with optimal mechanisms that maximize the principal’s revenue, and the
second one is concerned with efficient mechanisms that maximize the social wel-
fare. In static mechanism design, the representative work in the first and second
category is, respectively, Myerson (1981) and Vickrey (1961).

In the next section, we examine optimal dynamic mechanisms. We first find
necessary and sufficient conditions for perfect Bayesian incentive compatibil-
ity and formulate the optimal dynamic mechanism problem. The technique we
employ is quite standard in static mechanism design. In Section 3, we examine
efficient dynamic mechanisms. It is well-known in static mechanism design that
the Groves mechanism is the only outcome efficient and dominant strategy in-
centive compatible mechanism. We extend this uniqueness result to dynamic set-
tings. In particular, we closely follow the method of proof in Green and Laffont

1There is a strand of dynamic mechanism design that studies settings in which the population
of players changes over time, but each player’s private information does not. We do not cover it.
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(1977) to highlight our assertion that many results in static mechanism design
can be ported to dynamic settings without novel insight and/or apparatus. A spe-
cial instance of the dynamic Groves mechanism is the dynamic pivot mechanism
of Bergemann and Välimäki (2010), which is a dynamic version of the famous
Vickrey-Clarke-Groves (VCG) mechanism. To see how the transition kernel re-
garding the evolution of private information affects the performance of dynamic
mechanisms, we investigate budget balance of the dynamic pivot mechanism in
some detail for a bilateral trading environment. Section 4 concludes.

2. OPTIMAL DYNAMIC MECHANISMS

2.1. THE SETUP

In this section, we examine optimal dynamic mechanisms. We consider a
single-player setting without loss of generality.2 Let t ∈ {1,2, . . . ,T} denote a
period, where T may be infinite. The player’s type in period t, which is private
information, is θt ∈ Θ = [θ ,θ ]. After θt is realized in period t, a public action
at ∈ A is determined. In addition, let zt ∈ IR be a monetary transfer from the
player in period t. Given sequences (θ1, . . . ,θT ) of types and (a1, . . . ,aT ) of
actions, together with (z1, . . . ,zT ) of monetary transfers, the player’s total payoff
is ∑

T
t=1 δ t−1

(
v(θt ,at)− zt), where δ ∈ [0,1] is the discount factor and v(·) is a

(one-period) valuation function.3 Let F1(θ1) denote the distribution of θ1, with
f1(θ1) being the corresponding density function. Define θ t = (θ1, . . . ,θt) and
at = (a1, . . . ,at), and let Ft(θt |θ t−1,at−1) denote the conditional distribution of
θt , with ft(θt |θ t−1,at−1) being the corresponding density function. We impose
the following Markov property throughout the paper:

Ft(θt |θ t−1,at−1) = Ft(θt |θt−1,at−1),

that is, Ft does not depend on θs or as for s = 1, . . . , t−2.4

2.2. TWO-PERIOD CASE

Let us first discuss the two-period case. A dynamic (direct) mechanism is
given by α1 : Θ→ A,τ1 : Θ→ IR,α2 : Θ×A×Θ→ A, and τ2 : Θ×A×Θ→ IR.

2It is straightforward to extend the results to the multi-player setting. We focus on the single-
player setting for notational convenience.

3We exclude δ = 1 when T = ∞.
4We may alternatively impose the Markov assumption as Ft(θt |θ t−1,at−1) =

Ft(θt |θt−1,at−1), i.e., Ft does not depend on θs but depends on as for s = 1, . . . , t − 2.
This alternative assumption does not affect the following results.
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Thus, α1(θ̂1) and τ1(θ̂1) are the action chosen and the transfer, respectively, in
period 1 when the player’s report is θ̂1, and α2(θ̂1,a1, θ̂2) and τ2(θ̂1,a1, θ̂2) are
the action chosen and the transfer, respectively, in period 2 when the player’s
report in period 1 is θ̂1, the action chosen in period 1 is a1, and the player’s
report in period 2 is θ̂2. Note that a1 in α2(·) and τ2(·) is α1(θ̂1) when the
mechanism is implemented. The player’s strategy is σ1 : Θ→ Θ and σ2 : Θ×
Θ×A×Θ→ Θ. Thus, θ̂1 = σ1(θ1) is the report in period 1 when the type is
θ1, and θ̂2 = σ2(θ1, θ̂1,a1,θ2) is the report in period 2 when the type, report, and
action in period 1 are θ1, θ̂1, and a1, respectively, and the type in period 2 is θ2.

Define

U2(θ̂2,θ2; θ̂1) = v(θ2,α2(θ̂1,α1(θ̂1), θ̂2))− τ2(θ̂1,α1(θ̂1), θ̂2).

This is the player’s period-2 payoff when the true type is θ2 but the report is
θ̂2 in period 2 and the report is period 1 is θ̂1. Note that this payoff does not
depend on θ1, the true type in period 1. Define with a slight abuse of notation
that U2(θ2; θ̂1) =U2(θ2,θ2; θ̂1). Define

U1(θ̂1,θ1) = v(θ1,α1(θ̂1))− τ1(θ̂1)

+ δ

∫
θ

θ

(
v(θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))− τ2(θ̂1,α1(θ̂1), θ̃2)

)
dF2(θ̃2|θ1,α1(θ̂1)).

Note that F2(θ̃2|θ1,α1(θ̂1)) depends on the true type θ1, and the chosen ac-
tion (that depends on the report θ̂1). Define with a slight abuse of notation that
U1(θ1) =U1(θ1,θ1).

Incentive compatibility is5

U1(θ1)≥U1(θ̂1,θ1) for all θ1 and θ̂1, (IC1)

U2(θ2; θ̂1)≥U2(θ̂2,θ2; θ̂1) for all θ2, θ̂2 and θ̂1. (IC2)

Note that (IC2) does not depend on θ1, the true type in period 1. (IC2) can be
written as

U2(θ2; θ̂1)−U2(θ̂2; θ̂1)≥ v(θ2,α2(θ̂1,α1(θ̂1), θ̂2))− v(θ̂2,α2(θ̂1,α1(θ̂1), θ̂2)).

Interchanging the roles of θ2 and θ̂2, we have

U2(θ̂2; θ̂1)−U2(θ2; θ̂1)≥ v(θ̂2,α2(θ̂1,α1(θ̂1),θ2))− v(θ2,α2(θ̂1,α1(θ̂1),θ2)).

5Note that it suffices to consider only the one-shot deviations in (IC1) by the unimprovability
principle.
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Combining these inequalities,

v(θ̂2,α2(θ̂1,α1(θ̂1), θ̂2))− v(θ2,α2(θ̂1,α1(θ̂1), θ̂2))

≥U2(θ̂2; θ̂1)−U2(θ2; θ̂1)

≥ v(θ̂2,α2(θ̂1,α1(θ̂1),θ2))− v(θ2,α2(θ̂1,α1(θ̂1),θ2)).

(1)

With suitable differentiability assumptions, we can get the following formula (2)
as well as (6) below. We will assume throughout this section that both v(·) and
f2(·) are continuously differentiable and that both α1(·) and α2(·) are differen-
tiable almost everywhere. Dividing (1) by θ̂2−θ2 and taking limits, we get

dU2(θ2; θ̂1)

dθ2
= vθ (θ2,α2(θ̂1,α1(θ̂1),θ2)) (2)

almost everywhere. Note that the notation vθ (θ ,a) is the partial derivative of
v(θ ,a) with respect to θ .

We assume that ∂v(θ ,a)/∂θ ≥ 0 and ∂ 2v(θ ,a)/(∂θ∂a)≥ 0 hold. Note that
this is the single-crossing condition. Then, (1) implies the monotonicity property
of

α2(θ̂1,α1(θ̂1), θ̂2)≥ α2(θ̂1,α1(θ̂1),θ2) for all θ̂2 > θ2 and θ̂1. (3)

Next, since dU2(θ2; θ̂1)/dθ2 is continuous almost everywhere on the interval
[θ ,θ ], it is Riemann integrable and we have

U2(θ2; θ̂1) =U2(θ ; θ̂1)+
∫

θ2

θ

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))dθ̃2 for all θ2 and θ̂1.

(4)
We have thus far shown that (IC2) implies (3) and (4). It is easy to show that

the converse also holds. Suppose not. Then, there exists θ̂1,θ2, and θ̂2 such that
U2(θ̂2,θ2; θ̂1)>U2(θ2; θ̂1), which implies

v(θ2,α2(θ̂1,α1(θ̂1), θ̂2))− v(θ̂2,α2(θ̂1,α1(θ̂1), θ̂2))>U2(θ2; θ̂1)−U2(θ̂2; θ̂1).

The left-hand side (LHS henceforth) is∫
θ2

θ̂2

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̂2))dθ̃2,

and the right-hand side (RHS henceforth) is∫
θ2

θ̂2

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))dθ̃2
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by (4). Rearranging,

∫
θ2

θ̂2

(
vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̂2))− vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))

)
dθ̃2 > 0.

But, the single-crossing assumption and the monotonicity (3) implies that this is
not possible. In summary, we have:

Theorem 1. (IC2) holds if and only if (3) and (4) hold.

As for period 1, (IC1) can be written as

U1(θ1)−U1(θ̂1)≥ v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

+ δ

∫
θ

θ

U2(θ̃2; θ̂1)d
(
F2(θ̃2|θ1,α1(θ̂1))−F2(θ̃2|θ̂1,α1(θ̂1))

)
.

Interchanging the roles of θ1 and θ̂1, we have

U1(θ̂1)−U1(θ1)≥ v(θ̂1,α1(θ1))− v(θ1,α1(θ1))

+ δ

∫
θ

θ

U2(θ̃2;θ1)d
(
F2(θ̃2|θ̂1,α1(θ1))−F2(θ̃2|θ1,α1(θ1))

)
.

Combining these inequalities,

v(θ̂1,α1(θ̂1))− v(θ1,α1(θ̂1))

+δ

∫
θ

θ

U2(θ̃2; θ̂1)d
(
F2(θ̃2|θ̂1,α1(θ̂1))−F2(θ̃2|θ1,α1(θ̂1))

)
≥U1(θ̂1)−U1(θ1)

≥ v(θ̂1,α1(θ1))− v(θ1,α1(θ1))

+δ

∫
θ

θ

U2(θ̃2;θ1)d
(
F2(θ̃2|θ̂1,α1(θ1))−F2(θ̃2|θ1,α1(θ1))

)
.

(5)

Dividing by θ̂1−θ1 and taking limits, we get

dU1(θ1)

dθ1
= vθ (θ1,α1(θ1))+δ

∫
θ

θ

U2(θ̃2;θ1)
∂ f2(θ̃2|θ1,α1(θ1))

∂θ1
dθ̃2

almost everywhere. Note that ∂ f2/∂θ1 is only with respect to θ1 in f2(θ2|θ1,a1),
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not with respect to a1. Now,

∫
θ

θ

U2(θ̃2;θ1)
∂ f2(θ̃2|θ1,α1(θ1))

∂θ1
dθ̃2 =

[
U2(θ̃2;θ1)

∂F2(θ̃2|θ1,α1(θ1))

∂θ1

]θ

θ

−
∫

θ

θ

vθ (θ̃2,α2(θ1,α1(θ1), θ̃2))
∂F2(θ̃2|θ1,α1(θ1))

∂θ1
dθ̃2

=−
∫

θ

θ

vθ (θ̃2,α2(θ1,α1(θ1), θ̃2))
∂F2(θ̃2|θ1,α1(θ1))

∂θ1
dθ̃2

where the first equality follows from (2) and the second equality follows from
the fact that F2(θ |θ1,α1(θ1)) = 0 and F2(θ |θ1,α1(θ1)) = 1 for all θ1 and so
∂F2/∂θ1 = 0 when θ̃2 = θ or θ . Therefore,

dU1(θ1)

dθ1
=vθ (θ1,α1(θ1))

−δ

∫
θ

θ

vθ (θ̃2,α2(θ1,α1(θ1), θ̃2))
∂F2(θ̃2|θ1,α1(θ1))

∂θ1
dθ̃2

(6)

almost everywhere. We thus have

U1(θ1) = U1(θ)+
∫

θ1

θ

vθ (θ̃1,α1(θ̃1))dθ̃1

− δ

∫
θ1

θ

∫
θ

θ

vθ (θ̃2,α2(θ̃1,α1(θ̃1), θ̃2))
∂F2(θ̃2|θ̃1,α1(θ̃1))

∂θ1
dθ̃2dθ̃1

(7)

for all θ1.

We have shown that (IC1) implies (7). We next show that (7) and the follow-
ing condition together with (4) imply (IC1).

∫
θ1

θ̂1

vθ (θ̃1,α1(θ̃1))dθ̃1

−δ

∫
θ1

θ̂1

∫
θ

θ

vθ (θ̃2,α2(θ̃1,α1(θ̃1), θ̃2))
∂F2(θ̃2|θ̃1,α1(θ̃1))

∂θ1
dθ̃2dθ̃1

≥
∫

θ1

θ̂1

vθ (θ̃1,α1(θ̂1))dθ̃1

−δ

∫
θ1

θ̂1

∫
θ

θ

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))
∂F2(θ̃2|θ̃1,α1(θ̂1))

∂θ1
dθ̃2dθ̃1

(8)
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for all θ1 and θ̂1. Observe first that, by (7), the LHS of (8) is equal to U1(θ1)−
U1(θ̂1). Observe next that the RHS is equal to

v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

−δ

∫
θ1

θ̂1

∫
θ

θ

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))
∂F2(θ̃2|θ̃1,α1(θ̂1))

∂θ1
dθ̃2dθ̃1

= v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

−δ

∫
θ

θ

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))
∫

θ1

θ̂1

∂F2(θ̃2|θ̃1,α1(θ̂1))

∂θ1
dθ̃1dθ̃2

= v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

−δ

∫
θ

θ

vθ (θ̃2,α2(θ̂1,α1(θ̂1), θ̃2))
(
F2(θ̃2|θ1,α1(θ̂1))−F2(θ̃2|θ̂1,α1(θ̂1))

)
dθ̃2

= v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

−δ

[
U2(θ̃2; θ̂1)

(
F2(θ̃2|θ1,α1(θ̂1))−F2(θ̃2|θ̂1,α1(θ̂1))

)]θ

θ

+δ

∫
θ

θ

U2(θ̃2; θ̂1)d
(
F2(θ̃2|θ1,α1(θ̂1))−F2(θ̃2|θ̂1,α1(θ̂1))

)
= v(θ1,α1(θ̂1))− v(θ̂1,α1(θ̂1))

+δ

∫
θ

θ

U2(θ̃2; θ̂1)d
(
F2(θ̃2|θ1,α1(θ̂1))−F2(θ̃2|θ̂1,α1(θ̂1))

)
.

The first equality follows from the change in the order of integration, the sec-
ond equality follows from integrating out the inner integral, the third equality
follows from (4) and integration by parts, and the last equality follows from
the fact that F2(θ |θ1,α1(θ̂1)) = F2(θ |θ̂1,α1(θ̂1)) = 0 and F2(θ |θ1,α1(θ̂1)) =
F2(θ |θ̂1,α1(θ̂1)) = 1. Putting together, this is nothing but (IC1), and we proved
the claim. It is straightforward to see that (IC1) implies (8): Follow the reverse
steps of the previous argument. Hence, we have:

Theorem 2. Assume that (4) holds. Then, (IC1) holds if and only if (7) and (8)
hold.
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By definition of U1(θ1), the total expected payment the player makes is

∫
θ

θ

v(θ̃1,α1(θ̃1)) f1(θ̃1)dθ̃1

+δ

∫
θ

θ

∫
θ

θ

v(θ̃2,α2(θ̃1,α1(θ̃1), θ̃2)) f2(θ̃2|θ̃1,α1(θ̃1)) f1(θ̃1)dθ̃2dθ̃1

−
∫

θ

θ

U1(θ̃1) f1(θ̃1)dθ̃1.

Since

∫
θ

θ

U1(θ̃1) f1(θ̃1)dθ̃1 =
[
−U1(θ̃1)(1−F1(θ̃1))

]θ

θ

+
∫

θ

θ

dU1(θ̃1)

dθ1
(1−F1(θ̃1))dθ̃1

= U1(θ)+
∫

θ

θ

vθ (θ̃1,α1(θ̃1))(1−F1(θ̃1))dθ̃1

− δ

∫
θ

θ

∫
θ

θ

vθ (θ̃2,α2(θ̃1,α1(θ̃1), θ̃2))
∂F2(θ̃2|θ̃1,α1(θ̃1))

∂θ1
(1−F1(θ̃1))dθ̃2dθ̃1

where the second equality holds by the differential form of (7), the total expected
payment is equal to

∫
θ

θ

[
v(θ̃1,α1(θ̃1))− vθ (θ̃1,α1(θ̃1))

1−F1(θ̃1)

f1(θ̃1)

]
f1(θ̃1)dθ̃1

+ δ

∫
θ

θ

∫
θ

θ

[
v(θ̃2,α2(θ̃1,α1(θ̃1), θ̃2))+ vθ (θ̃2,α2(θ̃1,α1(θ̃1), θ̃2))

× 1−F1(θ̃1)

f1(θ̃1)

∂F2(θ̃2|θ̃1,α1(θ̃1))/∂θ1

f2(θ̃2|θ̃1,α1(θ̃1))

]
f2(θ̃2|θ̃1,α1(θ̃1)) f1(θ̃1)dθ̃2dθ̃1

−U1(θ).

Let us specialize to the situation where a monopolistic seller wants to sell an
indivisible good to a potential buyer. Then, the buyer’s payoff is v(θ ,a) = θa =
θq, where q is the probability of trade. In this case, we have v(θ1,α1(θ1)) =
θ1q1(θ1) and v(θ2,α2(θ1,α1(θ1),θ2)) = θ2q2(θ1,q1(θ1),θ2). Hence,

vθ (θ1,α1(θ1)) = q1(θ1) and vθ (θ2,α2(θ1,α1(θ1),θ2)) = q2(θ1,q1(θ1),θ2).
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The seller’s revenue is6

∫
θ

θ

[
θ̃1−

1−F1(θ̃1)

f1(θ̃1)

]
q1(θ̃1) f1(θ̃1)dθ̃1

+ δ

∫
θ

θ

∫
θ

θ

[
θ̃2 +

1−F1(θ̃1)

f1(θ̃1)

∂F2(θ̃2|θ̃1,q1(θ̃1))/∂θ1

f2(θ̃2|θ̃1,q1(θ̃1))

]
q2(θ̃1,q1(θ̃1), θ̃2)

× f2(θ̃2|θ̃1,q1(θ̃1)) f1(θ̃1)dθ̃2dθ̃1

−U1(θ).

If we define

ψ1(θ1) = θ1−
1−F1(θ1)

f1(θ1)
;

ψ2(θ1,θ2) = θ2 +
1−F1(θ1)

f1(θ1)

∂F2(θ2|θ1,q1(θ1))/∂θ1

f2(θ2|θ1,q1(θ1))
,

then the seller’s revenue becomes

∫
θ

θ

ψ1(θ̃1)q1(θ̃1) f1(θ̃1)dθ̃1

+ δ

∫
θ

θ

∫
θ

θ

ψ2(θ̃1, θ̃2)q2(θ̃1,q1(θ̃1), θ̃2) f2(θ̃2|θ̃1,q1(θ̃1)) f1(θ̃1)dθ̃2dθ̃1−U1(θ).

Observe that ψ1(θ1) and ψ2(θ1,θ2) correspond to the virtual valuation of My-
erson (1981). In particular, the term − ∂F2/∂θ1

f2
in ψ2(θ1,θ2) measures the effect

of θ1 on θ2, and is called a measure of informativeness by Baron and Besanko
(1984) and the impulse response by Pavan et al. (2014). Observe also that the
seller’s revenue does not depend on the transfer rule and thus the revenue equiva-
lence principle applies. The seller’s problem is then to choose the decision rules
q1(·) and q2(·) to maximize the revenue subject to U1(θ)≥ 0, (3), and (8). We
will not analyze the seller’s problem further in this elementary introduction, but
only note that the optimal solution can be found similarly to the static case when
ψ1(θ1) is increasing in θ1 and ψ2(θ1,θ2) is increasing in both θ1 and θ2.

We end this section by noting that the analysis above can be extended to
the general T -period case. See also Baron and Besanko (1984) and Pavan et al.
(2014) among others for related derivations.

6Note that α1(θ̃1) = q1(θ̃1) and α2(θ̃1,α1(θ̃1), θ̃2) = q2(θ̃1,q1(θ̃1), θ̃2).
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3. EFFICIENT DYNAMIC MECHANISMS

3.1. THE SETUP

In this section, we examine efficient dynamic mechanisms. There is a set
I = {1, . . . ,n} of players and a countable number of periods, indexed by t ∈
{0,1, . . .}. Player i’s type in period t is θ t

i ∈ Θi. We assume that this is private
information. Let θ t = (θ t

1, . . . ,θ
t
n) and Θ = ∏

n
i=1 Θi. We assume that Θ is a

Borel space, i.e., a Borel subset of a complete and separable metric space. Let
B(Θ) be the Borel σ -algebra on Θ. After θ t ∈Θ is realized in period t, a public
action at ∈ A is determined. We assume that A is a Borel space, with the Borel
σ -algebra B(A).7 In addition, let zt

i ∈ IR be a monetary transfer from player i in
period t. Given sequences (θ 0,θ 1, . . .) of type profiles and (a0,a1, . . .) of actions,
together with (z0

i ,z
1
i , . . .) of i’s monetary transfers, player i’s total payoff is

∞

∑
t=0

δ
t
(

vi(θ
t
i ,a

t)− zt
i

)
,

where (i) δ is a common discount factor and δ < 1, and (ii) vi(·) is a measurable
(one-period) valuation function. The valuation function is usually called as the
reward function in the Markov decision process literature. Note that we deal with
the private-values environment in that player i’s valuation function depends only
on player i’s type. We assume that vi(·) is bounded, that is, |vi(θi,a)| ≤C < ∞

for all θi and a.
The dynamic evolution of players’ types is represented by a stochastic ker-

nel. Let p(B|θ t ,at) for B ∈B(Θ) be the conditional probability that the type
profile lies in B in period t + 1 when the type profile is θ t and the action is at

in period t. We have (i) p(·|θ t ,at) is a probability measure on Θ for each fixed
(θ t ,at), and (ii) p(B|·, ·) is a measurable function with respect to the product
σ -algebra B(Θ×A) for each fixed B ∈B(Θ). We assume that p(·|·, ·) is inde-
pendent across players in the sense that p(θ ′|θ ,a) = ∏

n
i=1 pi(θ

′
i |θi,a). Observe

that, except for the fact that θ is private information, this environment fits into a
Markov decision process with Θ being the set of states.

We focus attention on dynamic direct mechanisms that ask each player to
report his type (i.e., state) in each period. In particular, we will restrict attention
to deterministic Markovian mechanisms. A deterministic Markovian decision
rule is a measurable function ât : Θ→ A that chooses an action based only on

7We impose the assumption that Θ and A are Borel spaces to employ some of the results in
Hernández-Lerma and Lasserre (1996). See footnote 10.
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current state.8 In addition, the mechanism specifies the monetary transfers: A
deterministic Markovian transfer rule of the mechanism in period t is a collection
of measurable functions {ẑt

i : Θ→ IR}i∈I . Let ẑt = (ẑt
1, . . . , ẑ

t
n). A dynamic direct

mechanism is represented by a family of decision rules and monetary transfer
rules, {ât , ẑt}∞

t=0.
A policy of the mechanism is a sequence of decision rules, that is, a policy

is π = (â0, â1, . . .). We call a policy stationary if ât = â for all t. A stationary
policy has the form π = (â, â, . . .), which is denoted by â∞. For the stationary
environment considered in this paper,9 we can without loss of generality restrict
our attention to deterministic stationary policies when finding a policy that max-
imizes the expected discounted sum of players’ valuations

Eπ
θ

[ ∞

∑
t=0

δ
t

n

∑
j=1

v j(θ̃
t
j, ã

t)
]

for every θ ∈Θ.10 Note that the expectation is over the stochastic process given
the initial θ .11 An outcome efficient policy thus has the form π∗ = (a∗)∞ where
a∗ : Θ→ A. We can also restrict our attention to stationary transfer rules. We
want to note that some previous works in the literature consider only determin-
istic Markovian mechanisms from the outset without proper theoretical under-
pinnings, that is, without providing conditions that rationalize this restriction for
the particular settings.

3.2. THE UNIQUENESS OF DYNAMIC GROVES MECHANISMS

Define the total social welfare function W : Θ→ IR recursively by the fol-
lowing optimality equation (or Bellman equation):

W (θ) =
n

∑
j=1

v j(θ j,a∗(θ))+δ

∫
Θ

W (θ ′)p(dθ
′|θ ,a∗(θ)).

8A general decision rule may depend on all past reports and actions. It may be deterministic
or probabilistic.

9The environment is stationary since both the valuation function vi(·) for all i and the stochas-
tic kernel p(·|·) do not vary with t.

10See Theorem 4.2.3 of Hernández-Lerma and Lasserre (1996). Note that a deterministic
stationary policy is a deterministic Markovian policy.

11We will assume throughout that the relevant maximum is attained without specifying suf-
ficient conditions. This assumption is valid under standard conditions on the environment: See
Theorem 4.2.3 of Hernández-Lerma and Lasserre (1996) and the discussion preceding it.
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Given an outcome efficient policy π∗, we can also define player i’s total valuation
function Vi(θ) recursively as

Vi(θ) = vi(θi,a∗(θ))+δ

∫
Θ

Vi(θ
′)p(dθ

′|θ ,a∗(θ)).

Observe that

Vi(θ) =vi(θi,a∗(θ))+δ

∫
Θ

vi(θ
′
i ,a
∗(θ ′))p(dθ

′|θ ,a∗(θ))

+δ
2
∫

Θ

∫
Θ

vi(θ
′′
i ,a
∗(θ ′′))p(dθ

′′|θ ′,a∗(θ ′))p(dθ
′|θ ,a∗(θ))+ · · · .

Likewise, we can define the total valuation function of players other than i recur-
sively as

V−i(θ) = ∑
j 6=i

v j(θ j,a∗(θ))+δ

∫
Θ

V−i(θ
′)p(dθ

′|θ ,a∗(θ)).

Note that we use the usual notational convention that the subscript−i pertains to
players other than i. Thus, θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θn), Θ−i = ∏ j 6=i Θ j, and
so on. We now define dynamic Groves mechanisms.

Definition 1. A dynamic Groves mechanism is a dynamic direct mechanism
with an outcome efficient policy π∗ = (a∗)∞ and a stationary total transfer rule
for player i = 1, . . . ,n given as

Z∗i (θ) =−V−i(θ)+Φi(θ−i)

for some Φi : Θ−i→ IR.
Note that Φi(·) does not depend on θi. If we recall the terminology of

d’Aspremont and Gérard-Varet (1979), the dynamic Groves mechanism is a dis-
tribution mechanism since the total transfer rule is given as the difference be-
tween V−i(θ) and the total distribution rule Φi(θ−i). In addition, the total distri-
bution rule Φi(θ−i) is discretionary because it does not depend on θi.

It is easy to establish that dynamic Groves mechanisms are periodic ex-post
incentive compatible, that is, the truth-telling strategy is a best response for every
player i and every true type profile θ in every period t and private history.12

Theorem 3. A dynamic Groves mechanism is periodic ex-post incentive com-
patible.

12For a more detailed discussion on the concept of ex-post incentive compatibility in dynamic
settings, see Bergemann and Välimäki (2010), Yoon (2021), etc.
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Proof. Omitted since it is straightforward. See, for instance, Yoon (2021).

We now establish the uniqueness of dynamic Groves mechanisms. Our ap-
proach is to port the results for static Groves mechanisms to the dynamic setting:
We closely follow the method of proof in Green and Laffont (1977) to highlight
our approach of porting the results for static Groves mechanisms to the dynamic
setting. Cavallo (2008) has done essentially the same analysis. Hence, the mate-
rial in this subsection may be taken as a (hopefully) clearer derivation with solid
groundwork.

A key step is to define player i’s total valuation when the current-period type
profile is (θi,θ−i), the action a is chosen in the current period, and the outcome
efficient policy is followed afterwards. Let

V O
i (θi,θ−i,a) = vi(θi,a)+δ

∫
Θ

vi(θ
′
i ,a
∗(θ ′))p(dθ

′|θi,θ−i,a)

+ δ
2
∫

Θ

∫
Θ

vi(θ
′′
i ,a
∗(θ ′′))p(dθ

′′|θ ′,a∗(θ ′))p(dθ
′|θi,θ−i,a)+ · · · .

In recursive form, we have

V O
i (θi,θ−i,a) = vi(θi,a)+δ

∫
Θ

V O
i (θ ′i ,θ

′
−i,a

∗(θ ′))p(dθ
′|θi,θ−i,a).

Note that player i’s total valuation function Vi(θ) defined earlier is equal to
V O

i (θ ,a∗(θ)). We can similarly define V O
−i(θi,θ−i,a) and W O(θi,θ−i,a). We

also have V−i(θ) =V O
−i(θ , a∗(θ)) and W (θ) =W O(θ ,a∗(θ)). We have:

Theorem 4. If a dynamic direct mechanism with an outcome efficient policy
π∗ = (a∗)∞ is periodic ex-post incentive compatible, then it is a dynamic Groves
mechanism.

It is convenient to present the following definition and lemma before the
proof of this theorem.

Definition 2. A dynamic direct mechanism with an outcome efficient policy
π∗ = (a∗)∞ and a stationary total transfer rule Zi : Θ→ IR satisfies Property A if

Zi(θi,θ−i)−Zi(θ̄i,θ−i) =V−i(θ̄i,θ−i)−V−i(θi,θ−i)
for all θi, θ̄i, and θ−i.

Lemma 1. A dynamic direct mechanism with an outcome efficient policy π∗ =
(a∗)∞ is a dynamic Groves mechanism if and only if it satisfies Property A.

Proof. It is obvious that a dynamic Groves mechanism satisfies Property
A. For the other direction, define Φi(θ) = Zi(θ)+V−i(θ) for the given mech-
anism. Note that Φi(·) does not depend on θi, i.e., Φi(θi,θ−i) = Φi(θ̄i,θ−i)
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by Property A, so write it as Φi(θ−i). Then, the total transfer rule given as
Zi(θ) =−V−i(θ)+Φi(θ−i) constitutes a dynamic Groves mechanism.

Proof of Theorem 4. We will show that if a dynamic direct mechanism with
an outcome efficient policy π∗ = (a∗)∞ is periodic ex-post incentive compatible
then it satisfies Property A. Then, Lemma 1 gives the desired result.

We first establish that, if a∗(θi,θ−i)= a∗(θ̄i,θ−i) and p(B|θi,θ−i,a∗(θ̄i,θ−i))=
p(B|θ̄i,θ−i,a∗(θ̄i,θ−i)) for all B ∈ B(Θ), then Zi(θi,θ−i) = Zi(θ̄i,θ−i). Sup-
pose otherwise. Then, there exist θi, θ̄i,θ−i with a∗(θi,θ−i) = a∗(θ̄i,θ−i) and
p(B|θi,θ−i,a∗(θ̄i,θ−i))= p(B|θ̄i,θ−i,a∗(θ̄i,θ−i)) for all B∈B(Θ) but Zi(θi,θ−i)>
Zi(θ̄i,θ−i).

Now if player i reports θ̄i when his true type is θi, his total payoff is

vi(θi,a∗(θ̄i,θ−i))+δ

∫
Θ

Vi(θ
′)p(dθ

′|θi,θ−i,a∗(θ̄i,θ−i))

− zi(θ̄i,θ−i)−δ

∫
Θ

Zi(θ
′)p(dθ

′|θi,θ−i,a∗(θ̄i,θ−i)).

Observe that the first two terms are equal to Vi(θi,θ−i) since a∗(θi,θ−i)= a∗(θ̄i,θ−i)
and the next two terms are equal to−Zi(θ̄i,θ−i) since p(dθ ′|θi,θ−i,a∗(θ̄i,θ−i))=
p(dθ ′|θ̄i,θ−i, a∗(θ̄i,θ−i)). Thus, player i has an incentive to report θ̄i when his
true type is θi since

Vi(θ)−Zi(θ)<Vi(θ)−Zi(θ̄i,θ−i).

This contradicts the fact that the mechanism is periodic ex-post incentive com-
patible.

Suppose next that Property A does not hold. Then, there exist θi, θ̄i,θ−i with
Zi(θi,θ−i)−Zi(θ̄i,θ−i) = V−i(θ̄i,θ−i)−V−i(θi,θ−i)− ε for some ε > 0. Let θ̂i

be such that

(i) V O
i (θ̂i,θ−i,a∗(θi,θ−i)) =−V−i(θi,θ−i) and

p(B|θ̂i,θ−i,a∗(θi,θ−i)) = p(B|θi,θ−i,a∗(θi,θ−i)) for all B ∈B(Θ),

(ii) V O
i (θ̂i,θ−i,a∗(θ̄i,θ−i)) =−V−i(θ̄i,θ−i)+η with 0 < η < ε and

p(B|θ̂i,θ−i,a∗(θ̄i,θ−i)) = p(B|θ̄i,θ−i,a∗(θ̄i,θ−i)) for all B ∈B(Θ),

(iii) V O
i (θ̂i,θ−i,a) =−c for all a 6= a∗(θi,θ−i) or a∗(θ̄i,θ−i)

with c > sup
π,θ

Eπ
θ

[ ∞

∑
t=0

δ
t
∑
j 6=i

v j(θ̃
t
j, ã

t)
]
.
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We have a∗(θ̂i,θ−i) = a∗(θ̄i,θ−i), that is, W (θ̂i,θ−i) is maximized at a∗(θ̄i,θ−i).
To see this, observe that, when the current-period type profile is (θ̂i,θ−i), the
action a∗(θ̄i,θ−i) gives

vi(θ̂i,a∗(θ̄i,θ−i))+∑
j 6=i

v j(θ j,a∗(θ̄i,θ−i))+δ

∫
Θ

W (θ ′)p(dθ
′|θ̂i,θ−i,a∗(θ̄i,θ−i))

=V O
i (θ̂i,θ−i,a∗(θ̄i,θ−i))+V−i(θ̄i,θ−i) = η

since p(B|θ̂i,θ−i,a∗(θ̄i,θ−i)) = p(B|θ̄i,θ−i,a∗(θ̄i,θ−i)) for all B ∈B(Θ). Thus,
the sum of players’ total valuations is equal to η . Likewise, the action a∗(θi,θ−i)
gives the sum of players’ total valuations as zero, and any other action a gives
the sum of players’ total valuations as less than zero. Hence, a∗(θ̂i,θ−i) =
a∗(θ̄i,θ−i). This, together with p(B|θ̂i,θ−i,a∗(θ̄i,θ−i))= p(B|θ̄i,θ−i,a∗(θ̄i,θ−i))
for all B ∈B(Θ), in turn implies that Zi(θ̂i,θ−i) = Zi(θ̄i,θ−i) by the first part of
the proof.

Since

Zi(θi,θ−i)−Zi(θ̄i,θ−i) =V−i(θ̄i,θ−i)−V−i(θi,θ−i)− ε

=V O
i (θ̂i,θ−i,a∗(θi,θ−i))−V O

i (θ̂i,θ−i,a∗(θ̄i,θ−i))− ε +η ,

we get

V O
i (θ̂i,θ−i,a∗(θi,θ−i))−Zi(θi,θ−i)>V O

i (θ̂i,θ−i,a∗(θ̄i,θ−i))−Zi(θ̄i,θ−i).

Thus, player i has an incentive to report θi when his true type is θ̂i. This con-
tradicts the fact that the mechanism is periodic ex-post incentive compatible.

By Theorems 3 and 4, a dynamic direct mechanism with an outcome efficient
policy π∗ = (a∗)∞ is periodic ex-post incentive compatible if and only if it is a
dynamic Groves mechanism. We note that this result is obtained for unrestricted
domain in the sense that, as the proof shows, any total valuation V O

i (θ̂i,θ−i,a)
and transition kernel p(·|θ̂i,θ−i,a) may be constructed as needed. As a matter of
fact, the uniqueness result can be established as well on more restricted domains,
such as the domain of continuous (or connected, concave, etc.) total valuations,
by appropriately porting the corresponding results, say Walker (1978) or Holm-
ström (1979), for static mechanism design. See Yoon (2021) for an example of
this approach, which builds on the more recent work of Carbajal (2010).

3.3. BUDGET BALANCE OF DYNAMIC PIVOT MECHANISMS

A special instance of the dynamic Groves mechanism is the dynamic pivot
mechanism as defined by Bergemann and Välimäki (2010): Set the function
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Φi(θ−i) in Definition 1 to be equal to

W−i(θ−i) = ∑
j 6=i

v j(θ j,a∗−i(θ−i))+δ

∫
Θ−i

W−i(θ
′
−i)p−i(dθ

′
−i|θ−i,a∗−i(θ−i)),

where a∗−i : Θ−i→ A is a decision rule that maximizes the expected discounted
sum Eπ

θ
[∑∞

t=0 δ t
∑ j 6=i v j(θ̃

t
j, ã

t)] of the valuations of players other than i. Then,
player i’s total payoff is equal to his total marginal contribution W (θ)−W−i(θ−i).
Observe that this is the dynamic version of the famous Vickrey-Clarke-Groves
(VCG) mechanism. We investigate the budget balance problem of this mecha-
nism. To get a firm grasp of the subject, we will analyze the bilateral trading
environment in some detail.

A seller and a buyer have an opportunity to trade in periods t = 0,1,2 . . .,
where the seller is endowed with one indivisible unit of a perishable good at the
beginning of each period. Let θ t

i ∈ Θi be player i’s valuation for the good in
period t, where i = s for the seller and i = b for the buyer. The valuations are
private information. Note that this is a dynamic version of the bilateral trad-
ing under incomplete information, the static version of which was pioneered by
Chatterjee and Samuelson (1983) and Myerson and Satterthwaite (1983). Let
θ t = (θ t

s ,θ
t
b) and Θ = Θs×Θb. After θ t ∈ Θ is realized in period t, a trading

decision at ∈ A ⊆ [0,1] is determined. Here, at is the probability of trade, i.e.,
the probability that the seller hands over the good to the buyer. In addition, let
zt

i ∈ IR be a monetary transfer from player i in period t.
The dynamic pivot mechanism in this environment is as follows. First, the

decision rule is efficient: An efficient decision rule in each period is a∗ : Θ→ A
such that

a∗(θ t
s ,θ

t
b) = {

1 i f θ t
s < θ t

b,
0 otherwise.

Thus, the seller’s payoff from the decision in period t, i.e., vs(θ
t
s ,a
∗), is zero

when a∗ = 1 and θ t
s when a∗ = 0. On the other hand, the buyer’s payoff from

the decision in period t, i.e., vb(θ
t
b,a
∗), is θ t

b when a∗ = 1 and zero when a∗ = 0.
Henceforth, we will normalize players’ payoffs from autarky to zero. This in
particular implies that the seller’s payoff from the decision becomes −θ t

s when
a∗ = 1 and zero when a∗ = 0, whereas the buyer’s payoff from the decision
remains the same.13 That is, (i) When a∗ = 1, we have vs = −θ t

s and vb = θ t
b,

and (ii) When a∗ = 0, we have vs = vb = 0. Next, the transfer payment z∗i (θ
t)

13One may envision that the seller actually produces the good with a cost of θ t
s only after the

decision rule dictates the trade.
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from the players is such that z∗s (θ) = −θ t
b and z∗b(θ) = θ t

s when a∗ = 1, and
z∗s (θ

t) = z∗b(θ
t) = 0 when a∗ = 0. Indeed, since the seller cannot trade without

the buyer and vice versa, the social welfare without one player is always zero.
Thus, the transfer rule of the dynamic pivot mechanism becomes

z∗s (θ
t) =−vb(θ

t
b,a
∗(θ t)) and z∗b(θ

t) =−vs(θ
t
s ,a
∗(θ t)).

The dynamic pivot mechanism is periodic ex-post incentive compatible. Ob-
serve that both players’ payoffs are θ t

b − θ t
s when the trade occurs, and zero

when the trade does not occur. Hence, each player’s payoff in each period is
non-negative, so the periodic ex-post participation constraints are satisfied.

The flow budget deficit of the dynamic pivot mechanism is−z∗s (θ
t)−z∗b(θ

t),
which is equal to θ t

b − θ t
s when θ t

s < θ t
b and zero otherwise. Therefore, the

dynamic pivot mechanism runs a budget deficit even in expectation. To cope
with the budget problem, we modify the dynamic pivot mechanism in a way that
lump-sum (participation) fees are collected from the players. In a similar spirit,
Yoon (2001, 2008) studied the participatory Vickrey-Clarke-Groves mechanism
in various static settings.

3.3.1 A two-period example

We first study the case when there are two periods, t = 0,1. Equivalently,
we assume that the seller is endowed with the good only in periods 0 and 1. We
assume δ = 1 for this two-period example to avoid unnecessary complications.

A. The continuous case

(1) Independent valuations

Let us assume that θ t
i ’s are independently and identically distributed accord-

ing to the uniform distribution on [0,1] for all t = 0,1 and i = s,b. Thus, θ t
i ’s are

independent across periods as well as across players. Then, we have

E[z1
s ] =−

∫ 1

0

∫ 1

θs

θbdθbdθs =−
1
3

and

E[z1
b] =

∫ 1

0

∫
θb

0
θsdθsdθb =

1
6
.

Hence, the mechanism runs an expected deficit of 1/6 in period 1. It is also clear
that the mechanism runs an expected deficit of 1/6 in period 0, too.14

14Note well that we have to take expectation over all possible valuations since the mechanism
does not know the players’ private information.
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At the beginning of period 0 when player i knows his valuation θ 0
i but not

θ 1
i , the latter is a random variable. Thus, both players’ expected period-1 payoffs

are ∫ 1

0

∫ 1

θs

(θb−θs)dθbdθs =
1
6
.

So, the total expected payoff of the seller with valuation θ 0
s at the beginning of

period 0 is ∫ 1

θ 0
s

(θ 0
b −θ

0
s )dθ

0
b +

1
6
=

(1−θ 0
s )

2

2
+

1
6

and the total expected payoff of the buyer with valuation θ 0
b at the beginning of

period 0 is ∫
θ 0

b

0
(θ 0

b −θ
0
s )dθ

0
s +

1
6
=

(θ 0
b )

2

2
+

1
6
.

This gives us the conclusion that, by charging each player a lump-sum fee of 1/6,
(i) the mechanism can make up for the expected deficit of both period 0 and pe-
riod 1, and (ii) both players participate in period 0. Therefore, the dynamic pivot
mechanism with lump-sum fees achieves efficiency, (ex-ante) budget balance,
and individual rationality.

(2) Persistent valuations

Let us assume now that θ 0
i = θ 1

i = θi for i = s,b. That is, each player’s
valuation is persistent over time. Assume also that θs and θb are independently
and identically distributed according to the uniform distribution on [0,1]. Hence,
valuations are independent across players but perfectly correlated across periods.

In this case, the budget deficit problem is not alleviated but exacerbated since
players know their period-1 valuations at the beginning of period 0. In fact, we
essentially face a static problem duplicated. The total expected payoff of the
seller with valuation θs and of the buyer with valuation θb at the beginning of
period 0 is (1−θs)

2 and θ 2
b , respectively. To satisfy the participation constraints

(specifically for the seller with θs = 1 and the buyer with θb = 0), the mecha-
nism cannot charge any additional fee, and consequently the mechanism runs an
expected deficit of 1/3.

This example is meant to demonstrate that the dependence of valuations
across periods is crucial for the budget balance of the dynamic mechanism. The
mechanism is ex-ante budget-balancing when valuations are independent across
periods. By contrast, the mechanism runs budget deficit when valuations are
perfectly correlated across periods. The natural question is: What is the scope of
dependence that ensures budget balance?
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B. The discrete case
To answer this question, let us assume that θ t

i ∈ {0,1}. That is, each player’s
valuation takes either zero or one. Then, the trade occurs only when θ t

s = 0 and
θ t

b = 1 in an efficient decision rule. So, zt
s = −1 and zt

b = 0 when a∗ = 1, and
zt

s = zt
b = 0 when a∗ = 0. Both players’ payoffs are 1 when the trade occurs and

0 when the trade does not occur.
Assume that the initial distribution of θ 0

i for i = s,b is such that θ 0
i = 0 or 1

with equal probability of 1/2. The transition matrix for the seller is given as

Ps = (
s00 s01
s10 s11

),

where si j for i, j = 0,1 is the probability that θ 1
s = j given θ 0

s = i. The transition
matrix for the buyer is similarly given as

Pb = (
b00 b01
b10 b11

).

The initial distribution and the transition matrices are common knowledge, whereas
the realizations of valuations are private information.

The expected budget deficit is 1/4 in t = 0 and (s00 + s10)(b01 + b11)/4 in
t = 1. This is so since θ 1

s = 0 with probability (s00 + s10)/2 and θ 1
b = 1 with

probability (b01 + b11)/2. Now consider the seller with θ 0
s = 0. His expected

payoff is 1/2 in t = 0 and s00(b01 + b11)/2 in t = 1. Likewise, the expected
payoff of the seller with θ 0

s = 1 is zero in t = 0 and s10(b01 + b11)/2 in t = 1.
Similarly, the expected payoff of the buyer with θ 0

b = 0 is zero in t = 0 and
b01(s00+s10)/2 in t = 1, and that with θ 0

b = 1 is 1/2 in t = 0 and b11(s00+s10)/2
in t = 1. Hence, budget balance can be achieved if

1+(s00 + s10)(b01 +b11)

4
≤min

{1+ s00(b01 +b11)

2
,
s10(b01 +b11)

2

}
+min

{b01(s00 + s10)

2
,
1+b11(s00 + s10)

2

}
.

When valuations are independent across periods so that si j = bi j = 1/2 for
all i, j = 0,1, then both the LHS and the RHS are equal to 1/2. Thus, budget
balance is achieved. When valuations are persistent over time so that s00 = s11 =
b00 = b11 = 1 and s01 = s10 = b01 = b10 = 0, then the LHS is 1/2 while the RHS
is 0. Thus, budget balance cannot be achieved. Another interesting case is when
players are symmetric so that Ps = Pb and, moreover,

Ps = Pb = (
α 1−α

1−α α
).
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In this case, the inequality becomes 1/2≤ 1−α , i.e., α ≤ 1/2. Thus, valuations
should not be positively serially correlated for the budget balance.

More generally, we can show that budget balance cannot be achieved when
(i) s00≥ 1/2, s11≥ 1/2, b00≥ 1/2, b11≥ 1/2, and moreover, (ii) max{s00,s11}>
1/2 and max{b00,b11}> 1/2. First, it is easy to see that

s10(b01 +b11)

2
≤ 1+ s00(b01 +b11)

2
and

b01(s00 + s10)

2
≤ 1+b11(s00 + s10)

2

since s10 = 1− s11 ≤ 1/2 and b01 = 1−b00 ≤ 1/2. Hence, we need to have

1+(s00 + s10)(b01 +b11)

4
≤ s10(b01 +b11)

2
+

b01(s00 + s10)

2

for budget balance. However, observe that

1+(s00 + s10)(b01 +b11)−2[s10(b01 +b11)+b01(s00 + s10)]

=1+b11(s00− s10)−b01(s00 +3s10)> 1+
1
2
(s00− s10)−

1
2
(s00 +3s10)

=1−2s10 ≥ 0,

where the inequalities hold due to our assumption. Thus, budget balance cannot
be achieved.

This example shows that positive serial correlation of valuations precludes
budget balance. Will it be still true when the number of periods increases?

3.3.2 Budget balance of dynamic bilateral trading

We resume back to the infinite-period setup, so that t = 0,1,2, . . .. Assume
that both θ t

s and θ t
b take one of the values from the set {v1, . . . ,vK}, with v1 <

v2 < · · ·< vK . As before, a∗(θ t
s ,θ

t
b) = 1 when θ t

s < θ t
b and a∗(θ t

s ,θ
t
b) = 0 when

θ t
s ≥ θ t

b in an efficient decision rule. So, zt
s = −θ t

b and zt
b = θ t

s when a∗ = 1,
and zt

s = zt
b = 0 when a∗ = 0. Both players’ payoffs are θ t

b−θ t
s when the trade

occurs, and zero when the trade does not occur. Let V be a K×K matrix whose
i j-th element vi j is equal to v j− vi when j > i and zero otherwise.

The dynamic evolution of valuations is represented by Markov chains. Let
Ps =

(
si j
)

i, j=1,...,K and Pb =
(
bi j
)

i, j=1,...,K be the seller’s and the buyer’s transition
matrix, respectively, and let x=(x1, . . . ,xK)

T and y=(y1, . . . ,yK)
T be the seller’s

and the buyer’s K×1 distribution vector of initial valuation at t = 0, respectively,
where the superscript T denotes the transpose.
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Observe that (i) the expected budget deficit in t = 0 is xTV y, and (ii) the
seller’s and the buyer’s distribution vector in period t is xT Pt

s and yT Pt
b, respec-

tively, where Pt
s (Pt

b) is the t-th power of Ps (Pb), and so the expected budget deficit
in period t is xT Pt

sV (Pt
b)

T y. By defining the K×K matrix Q(t) ≡ Pt
sV (Pt

b)
T , the

expected budget deficit in the dynamic pivot mechanism is
∞

∑
t=0

δ
txT Q(t)y.

Let ek be the K × 1 vector whose k-th element is 1 while other elements
are all zero. Then, the seller’s expected payoff when θ 0

s = vk is ∑
∞
t=0 δ teT

k Q(t)y
and the buyer’s expected payoff when θ 0

b = vk is ∑
∞
t=0 δ txT Q(t)ek. Thus, budget

balance can be achieved with lump-sum fees if and only if
∞

∑
t=0

δ
txT Q(t)y≤ min

k=1,...,K

{ ∞

∑
t=0

δ
teT

k Q(t)y
}
+ min

k=1,...,K

{ ∞

∑
t=0

δ
txT Q(t)ek

}
. (∗)

We discuss several special cases before presenting general results. First of
all, when Ps = Pb = I where I is the K×K identity matrix, so that valuations are
perfectly correlated across periods, we have Q(t) =V for all t ≥ 0. Thus,

∞

∑
t=0

δ
txT Q(t)y =

∞

∑
t=0

δ
t
( K

∑
i=1

K

∑
j=i+1

(v j− vi)xiy j

)
=

1
1−δ

K

∑
i=1

K

∑
j=i+1

(v j− vi)xiy j.

We also have

min
k=1,...,K

{ ∞

∑
t=0

δ
teT

k Q(t)y
}
= min

k=1,...,K

∞

∑
t=0

δ
tvk·y =

∞

∑
t=0

δ
tvK·y = 0

where vk· is the k-th row of V . Likewise,

min
k=1,...,K

{ ∞

∑
t=0

δ
txT Q(t)ek

}
= min

k=1,...,K

∞

∑
t=0

δ
txT v·k =

∞

∑
t=0

δ
txT v·1 = 0

where v·k is the k-th column of V . Thus, budget balance cannot be achieved
unless xiy j’s are all zero for i = 1, . . . ,K and j = i+1, . . . ,K.

Next, when Ps = Pb = P and P is the K×K matrix whose elements are all
1/K’s, so that valuations are independent across periods, we have Pt = P and
Q(t) = (1/K2)1V 1 for all t ≥ 1 where 1 is the K×K matrix whose elements are
all 1’s. Thus,

∞

∑
t=0

δ
txT Q(t)y = xTV y+

∞

∑
t=1

δ
t 1
K2

K

∑
i=1

K

∑
j=i+1

(v j− vi).
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We also have
∞

∑
t=0

δ
teT

k Q(t)y = eT
k V y+

∞

∑
t=1

δ
t 1
K2

K

∑
i=1

K

∑
j=i+1

(v j− vi).

Likewise,

∞

∑
t=0

δ
txT Q(t)ek = xTVek +

∞

∑
t=1

δ
t 1
K2

K

∑
i=1

K

∑
j=i+1

(v j− vi).

Thus, budget balance is achieved when

xTV y+
∞

∑
t=1

δ
t 1
K2

K

∑
i=1

K

∑
j=i+1

(v j− vi)≤ 2
∞

∑
t=1

δ
t 1
K2

K

∑
i=1

K

∑
j=i+1

(v j− vi),

i.e.,
K

∑
i=1

K

∑
j=i+1

(v j− vi)xiy j ≤
1

K2
δ

1−δ

K

∑
i=1

K

∑
j=i+1

(v j− vi).

This inequality is true for large δ , that is, for

δ ≥
K2

∑
K
i=1 ∑

K
j=i+1(v j− vi)xiy j

K2 ∑
K
i=1 ∑

K
j=i+1(v j− vi)xiy j +∑

K
i=1 ∑

K
j=i+1(v j− vi)

.

Thirdly, let us continue the example in the previous subsection and study the
case when (i) K = 2 with v1 = 0 and v2 = 1, so players’ valuations can take either
zero or one, and (ii) Ps = Pb = P and

P = (
α 1−α

1−α α
).

We have

Pt = (
1
2 +

1
2(2α−1)t 1

2 −
1
2(2α−1)t

1
2 −

1
2(2α−1)t 1

2 +
1
2(2α−1)t )≡ (

α(t) 1−α(t)

1−α(t) α(t) )

and thus

Q(t) = (
α(t)(1−α(t)) (α(t))2

(1−α(t))2 α(t)(1−α(t))
).

Given the initial distributions x = (1/2,1/2)T and y = (1/2,1/2)T , the budget
deficit is

∞

∑
t=0

δ
t(1/2,1/2)Q(t)(

1/2
1/2

) =
1

4(1−δ )
.
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On the other hand, the seller’s expected payoff when θ 0
s = 0 is

∞

∑
t=0

δ
t(1,0)Q(t)(

1/2
1/2

) =
∞

∑
t=0

δ
t · α

(t)

2
=

1
4

( 1
1−δ

+
1

1−δ (2α−1)

)
,

while that when θ 0
s = 1 is

∞

∑
t=0

δ
t(0,1)Q(t)(

1/2
1/2

) =
∞

∑
t=0

δ
t · 1−α(t)

2
=

1
4

( 1
1−δ

− 1
1−δ (2α−1)

)
.

Likewise, the buyer’s expected payoff when θ 0
b = 0 is

∞

∑
t=0

δ
t(1/2,1/2)Q(t)(

1
0
) =

1
4

( 1
1−δ

− 1
1−δ (2α−1)

)
and that when θ 0

b = 1 is

∞

∑
t=0

δ
t(1/2,1/2)Q(t)(

0
1
) =

1
4

( 1
1−δ

+
1

1−δ (2α−1)

)
.

Hence, budget balance is achieved if

1
4(1−δ )

≤ 1
2

( 1
1−δ

− 1
1−δ (2α−1)

)
,

i.e., if δ ≥ 1/(3−2α). For any α < 1, this inequality is satisfied for large enough
δ . Therefore, in contrast to the two-period case, budget balance is achieved for
any α < 1 when periods are infinite and players are sufficiently patient.

These examples suggest that budget balance of the dynamic pivot mechanism
can be achieved with lump-sum fees unless valuations are perfectly correlated
across periods. Indeed, we have:

Theorem 5. If the Markov chains for the seller and the buyer are irreducible
and aperiodic, budget balance is achieved for sufficiently large δ .

Proof. Let s(t)i j be the i j-th element of Pt
s , and let b(t)i j be the i j-th element of

Pt
b. By the well-known facts on finite Markov chains, there is a unique stationary

distribution µs such that (i) s(t)i j → µs
j as t → ∞ for all i, j = 1, . . . ,K, and (ii)

µs
j > 0 for all j = 1, . . . ,K. Likewise, there is unique stationary distribution

µb such that (i) b(t)i j → µb
j as t → ∞ for all i, j = 1, . . . ,K, and (ii) µb

j > 0 for

all j = 1, . . . ,K. Thus, for any ε > 0, there is t0 such that |s(t)i j − µs
j | < ε and

|b(t)i j −µb
j |< ε for t ≥ t0.
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Observe that

xT Pt
s =

( K

∑
h=1

xhs(t)h1 , · · · ,
K

∑
h=1

xhs(t)hK

)
, and yT Pt

b =
( K

∑
h=1

yhb(t)h1 , · · · ,
K

∑
h=1

yhb(t)hK

)
.

Thus, for arbitrary x and y, we have

xT Q(t)y = xT Pt
sV (Pt

b)
T y =

K

∑
i=1

K

∑
j=i+1

(v j− vi)
( K

∑
h=1

xhs(t)hi

)( K

∑
h=1

yhb(t)h j

)
<

K

∑
i=1

K

∑
j=i+1

(v j− vi)
( K

∑
h=1

xh(µ
s
i + ε)

)( K

∑
h=1

yh(µ
b
j + ε))

)
=

K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i + ε)(µb

j + ε)

for t ≥ t0. Hence,

∞

∑
t=0

δ
txT Q(t)y <

t0−1

∑
t=0

δ
txT Q(t)y+

δ t0

1−δ

( K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i + ε)(µb

j + ε)
)
.

On the other hand, we have

eT
k Q(t)y >

K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i − ε)

( K

∑
h=1

yh(µ
b
j − ε)

)
=

K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i − ε)(µb

j − ε)

and

xT Q(t)ek >
K

∑
i=1

K

∑
j=i+1

(v j− vi)
( K

∑
h=1

xh(µ
s
i − ε)

)
(µb

j − ε)

=
K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i − ε)(µb

j − ε)

for t ≥ t0. Hence,

min
k

{ ∞

∑
t=0

δ
teT

k Q(t)y
}
+min

k

{ ∞

∑
t=0

δ
txT Q(t)ek

}
=

∞

∑
t=0

δ
teT

ks
Q(t)y+

∞

∑
t=0

δ
txT Q(t)ekb

>
t0−1

∑
t=0

δ
teT

ks
Q(t)y+

t0−1

∑
t=0

δ
txT Q(t)ekb +

2δ t0

1−δ

( K

∑
i=1

K

∑
j=i+1

(v j− vi)(µ
s
i − ε)(µb

j − ε)
)
,
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where ks and kb respectively is a value that attains the minimum. Therefore,

min
k=1,...,K

{ ∞

∑
t=0

δ
teT

k Q(t)y
}
+ min

k=1,...,K

{ ∞

∑
t=0

δ
txT Q(t)ek

}
−

∞

∑
t=0

δ
txT Q(t)y

>
t0−1

∑
t=0

δ
teT

ks
Q(t)y+

t0−1

∑
t=0

δ
txT Q(t)ekb−

t0−1

∑
t=0

δ
txT Q(t)y

+
δ t0

1−δ

K

∑
i=1

K

∑
j=i+1

(v j− vi)
(

µ
s
i µ

b
j −3ε(µs

i +µ
b
j )+ ε

2
)
.

Observe that, since 0≤ xT Q(t)y≤C < ∞ for any x and y, we have

t0−1

∑
t=0

δ
teT

ks
Q(t)y+

t0−1

∑
t=0

δ
txT Q(t)ekb−

t0−1

∑
t=0

δ
txT Q(t)y≥−1−δ t0

1−δ
C.

Observe also that there is η > 0 such that µs
i µb

j − 3ε(µs
i + µb

j ) + ε2 > η for
sufficiently small ε > 0 and that η is independent of the discount factor δ . Thus,
as δ → 1, the term −(1−δ t0)C/(1−δ ) goes to −t0C whereas

δ t0

1−δ

K

∑
i=1

K

∑
j=i+1

(v j− vi)
(

µ
s
i µ

b
j −3ε(µs

i +µ
b
j )+ ε

2
)

goes to infinity. Therefore, condition (∗) is satisfied and so budget balance is
achieved.

Theorem 5 establishes that the dynamic pivot mechanism with lump-sum
fees is ex-post efficient, periodic ex-post incentive compatible and individually
rational, and ex-ante budget balancing. This was done by showing that condi-
tion (∗) is satisfied under appropriate assumptions on the Markov chain and the
discount factor.

We next show that budget balance cannot be achieved under the diverse pref-
erence assumption of Bergemann and Välimäki (2010). The diverse preference
assumption is essential in establishing that the dynamic pivot mechanism is the
only efficient mechanism that satisfies ex-post incentive compatibility, ex-post
participation constraint, and efficient exit condition. Thus, it is rather unfortu-
nate that this precludes even ex-ante budget balance.

Theorem 6. The dynamic pivot mechanism cannot achieve budget balance
under the diverse preference assumption.
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Proof. In our environment, part (i) of the diverse preference assumption
implies that the transition matrix Ps is such that sKK = 1 (while sK1 = · · · =
sK,K−1 = 0) and the transition matrix Pb is such that b11 = 1 (while b12 = · · · =
b1K = 0).15 It is straightforward to check that the KK-th element of Pt

s and the 11-
th element of Pt

b are also equal to 1, that is, s(t)KK = 1 (while s(t)K1 = · · ·= s(t)K,K−1 = 0)

and b(t)11 = 1 (while b(t)12 = · · ·= b(t)1K = 0) for all t ≥ 1. Hence,

min
k=1,...,K

{ ∞

∑
t=0

δ
teT

k Q(t)y
}
=

∞

∑
t=0

δ
teT

KPt
sV (Pt

b)
T y = 0

since eT
KPt

s = eT
K and eT

KPt
sV = 0, the 1×K vector whose elements are all zero.16

Likewise,

min
k=1,...,K

{ ∞

∑
t=0

δ
txT Q(t)ek

}
=

∞

∑
t=0

δ
txT Pt

sV (Pt
b)

T e1 = 0.

On the other hand, ∑
∞
t=0 δ txT Q(t)y > 0 in general.

The reason for this result is that the Markov chain is reducible under the diverse
preference assumption.

We have demonstrated that (i) budget balance of the dynamic pivot mecha-
nism can be achieved when the Markov chain is irreducible and aperiodic, and
(ii) the diverse preference assumption may preclude budget balance. These re-
sults can be extended to more general environments beyond bilateral trading:
See Yoon (2015).

4. CONCLUSION

We have given an elementary introduction to dynamic mechanism design.
We have examined both optimal dynamic mechanisms and efficient dynamic
mechanisms. As for optimal dynamic mechanisms, we have found necessary and
sufficient conditions for perfect Bayesian incentive compatibility and formulated
the optimal dynamic mechanism problem. As for efficient dynamic mechanisms,
we have established that the dynamic Groves mechanism is the only outcome
efficient and periodic ex-post incentive compatible mechanism by porting the
corresponding result for static mechanism design. We have also investigated

15Part (i) of the diverse preference assumption is as follows: For all i, there exists θ i ∈Θi such
that for all a, we have vi(θ i,a) = 0 and Fi(θ i;θ i,a) = 1 where Fi(·) is a transition function.

16Recall that vi j = 0 for j ≤ i.
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budget balance of the dynamic pivot mechanism in some detail for a bilateral
trading environment to understand better the role of transition kernel regarding
the evolution of private information. We have demonstrated that many results
and techniques of static mechanism design can be straightforwardly extended
and adapted to the analysis of dynamic settings.

This paper has considered standard frameworks. We admit that some dy-
namic environments, such as non-Markovian dynamic environments, may re-
quire a call for novel insight and techniques. We leave it to future research work.
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