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1. INTRODUCTION

How should we design the structure of prizes in contests where many con-
testants exert irreversible efforts to win a prize? In a very interesting paper,
Moldovanu and Sela (2001) constructed an incomplete-information model of
contests with multiple, nonidentical prizes in order to answer this question. One
of their main results is that, when the contest designer’s objective is maximiza-
tion of expected total effort, (i) it is optimal to award a single prize when cost
functions are linear or concave in effort, but (ii) several prizes may be optimal
when cost functions are convex.

This paper exploits the well-known fact that contests and all-pay auctions
are essentially the same problem and characterizes optimal prize allocation in
a particularly simple fashion: The all-pay auction framework in the present pa-
per makes it possible to derive all of the results of Moldovanu and Sela (2001)
straightforwardly. Moreover, while they explicitly dealt only with the case of two
prizes, the present paper considers more than two prizes without further analytic
complications.

This paper also characterizes optimal prize allocation when the contest de-
signer’s objective is maximization of expected highest effort. Similar to the case
of expected total effort maximization, this paper obtains that (iii) it is optimal to
award a single prize when cost functions are linear or concave in effort, but (iv)
several prizes may be optimal when cost functions are convex.1

Moldovanu and Sela’s papers contain an excellent discussion on the optimal
prize allocation problem: Readers may consult these papers for motivation and
intuition. The present paper aims at demonstrating that the analysis on contests
may be facilitated substantially with a proper setup of the problem, as well as at
obtaining new results.

2. THE MODEL

Consider a situation where m prizes are awarded to n players. Let n ≥ 2
and n ≥ m. Prize k has a ‘size’ of sk. Assume without loss of generality that
s1 ≥ s2 ≥ ·· · ≥ sm > 0 and that ∑

m
k=1 sk = 1. We will call the prize of size sk as

the k-th prize.

1We want to mention that Moldovanu and Sela (2006) in another paper considered maximiza-
tion of highest effort, but they did not provide a proof of Proposition 4 nor did they obtain Propo-
sitions 5 and 6 of the present paper. By the way, most of the results in Moldovanu and Sela (2006)
can also be easily derived with the present framework.
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Player i has a valuation vi for the prize of size 1. Let xi denote player i’s
expenditure to win one of the prizes, and γi denote player i’s cost parameter.
The expenditure may be a monetary bid in auctions, or an effort in contests.
Player i’s cost of expenditure is given by γic(xi), where c(·) is a strictly increasing
function with c(0) = 0.2 Thus, if player i with (vi,γi) exerts xi, then his payoff
is visk− γic(xi) when he wins the k-th prize while his payoff is −γic(xi) when
he wins nothing. Note that this is an unconditional commitment framework in
which players have to exert xi whether or not he wins a prize. The first prize is
awarded to the player with the highest expenditure, the second prize is awarded
to the player with the second highest expenditure, . . . , and the m-th prize is
awarded to the player with the m-th highest expenditure.

Player i’s valuation vi as well as his cost parameter γi is private information.
Thus, each player’s private information is two-dimensional. We now show that
we can reduce the dimension of private information. Let pk

i be the probability
that player i wins the k-th prize. Player i’s problem is

max
xi

vi

m

∑
k=1

pk
i sk− γic(xi).

Observe that this problem is equivalent to

max
xi

λvi

m

∑
k=1

pk
i sk−λγic(xi)

for any λ > 0. The problem becomes maxxi(vi/γi)∑
m
k=1 pk

i sk − c(xi) if we set
λ = 1/γi, and maxxi ∑

m
k=1 pk

i sk−(γi/vi)c(xi) if we set λ = 1/vi. In both problems,
the private information is one-dimensional as we construct equivalent classes of
the form (vi,γi) ∼ (vi/γi,1) for the former and (vi,γi) ∼ (1,γi/vi) for the lat-
ter. Observe that an equivalent class is graphically a ray from the origin. Ob-
serve also that the former problem is an all-pay auction problem as in Amann
and Leininger (1996), whereas the latter problem is a contest problem as in
Moldovanu and Sela (2001, 2006). Thus, as is well-known, all-pay auctions
and contests are essentially the same problem. Henceforth, we will normal-
ize γi = 1 for all i, making private information one-dimensional. We assume
that each player’s valuation is drawn independently from the interval [v,v] with
0≤ v < v≤ ∞ according to a common distribution F . We assume further that F
admits a continuous density function f which is strictly positive on the interval
[v,v].

2Moldovanu and Sela (2001, 2006) specified this multiplicative functional form.
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Each player chooses his expenditure to maximize the expected payoff, given
other players’ strategies and prize structure. Hence, player i’s strategy is a func-
tion βi : [v,v]→ ℜ+ that maps his valuation to the expenditure level. Player i’s
problem with valuation vi is

max
xi

Ev−i [vi

m

∑
k=1

pk
i (xi,β−i(v−i))sk− c(xi)].

In the above expression, we follow the convention that the subscript −i pertains
to players other than player i. For example, v−i = (v1,v2, . . . ,vi−1,vi+1, . . . ,vn).

Since players are symmetric, we begin with a heuristic derivation of sym-
metric equilibrium strategies. Before doing so, observe first that, by setting
sm+1 = · · · = sn = 0, we can assume that there always exist n prizes. Next, let
v1:n ≥ v2:n ≥ ·· · ≥ vn:n be the order statistics of v1, . . . ,vn. Note that vk:n is the
k-th highest among n valuations drawn from the common distribution F . The
distribution and the density of vk:n are denoted by Fk:n and fk:n, respectively.3 We
also deal with players’ valuations except for player i’s, so we can similarly have
the order statistic vk:n−1 and the corresponding functions Fk:n−1 and fk:n−1 of the
k-th highest among n−1 valuations.

Suppose that players other than i follow a symmetric, increasing and differ-
entiable equilibrium strategy β (·). First, it is straightforward to see that player i
will never optimally exert an expenditure xi > β (v). Second, it is also easy to see
that a player with valuation v will optimally choose an expenditure of zero. Then,
player i’s expected payoff when his valuation is vi and he exerts an expenditure
of β (wi) is

vi

n

∑
k=1

sk[Fk:n−1(wi)−Fk−1:n−1(wi)]− c(β (wi))

with the convention that F0:n−1(wi) ≡ 0 and Fn:n−1(wi) ≡ 1, and (recall that)
sm+1 = · · ·= sn = 0.

The first-order condition for the payoff maximization with respect to wi is

vi

n

∑
k=1

sk[ fk:n−1(wi)− fk−1:n−1(wi)]− c′(β (wi))β
′(wi) = 0,

3Fk:n(z) = ∑
k−1
r=0
(n

r
)
F(z)n−r[1−F(z)]r and fk:n(z) = n!

(k−1)!(n−k)! F(z)n−k[1−F(z)]k−1 f (z).
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from which we get in equilibrium that

c(β (vi)) =
n

∑
k=1

sk
∫ vi

v
w[ fk:n−1(w)− fk−1:n−1(w)]dw

=
n−1

∑
k=1

(sk− sk+1)
∫ vi

v
w fk:n−1(w)dw.

Thus, the equilibrium strategy is

β (vi) = c−1( n−1

∑
k=1

(sk− sk+1)
∫ vi

v
w fk:n−1(w)dw

)
.

While this is only a heuristic derivation, it is a standard exercise to show that this
is indeed an equilibrium.

3. MAXIMIZATION OF EXPECTED TOTAL EFFORT

Suppose the auctioneer receives all players’ expenditures, as in ordinary all-
pay auctions. This corresponds to contests in which the contest designer is in-
terested in the expected total sum of players’ effort: Moldovanu and Sela (2001)
characterized optimal prize allocation for this environment.

3.1. LINEAR COST FUNCTIONS

Assume first that the cost function is linear, i.e., c(xi) = xi. The auctioneer’s
revenue is

E
[
β (v1:n)+ · · ·+β (vn:n)

]
=

n

∑
j=1

∫ v

v
β (v)dFj:n(v) = n

∫ v

v
β (v)dF(v)

= n
∫ v

v

n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)dwdF(v)

=
n−1

∑
k=1

(sk− sk+1)n
∫ v

v
w fk:n−1(w)[1−F(w)]dw

=
n−1

∑
k=1

(sk− sk+1)n
∫ v

v
w

(n−1)!
(k−1)!(n−1− k)!

F(w)n−1−k[1−F(w)]k f (w)dw

=
n−1

∑
k=1

(sk− sk+1)k
∫ v

v
w

n!
k!(n− k−1)!

F(w)n−k−1[1−F(w)]k f (w)dw
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=
n−1

∑
k=1

(sk− sk+1)k
∫ v

v
w fk+1:n(w)dw

=
n−1

∑
k=1

(sk− sk+1)kµk+1:n

where µk+1:n is the expected value of the (k+1)-th highest among n valuations.
What is the optimal structure of prizes in an ordinary all-pay auction? In

other words, how should the auctioneer choose (s1, . . . ,sn) to maximize her rev-
enue? The following proposition gives the answer.4

Proposition 1. We have s1 = 1 and s2 = · · · = sn = 0 in an optimal all-pay
auction. That is, the auctioneer’s revenue is maximized when she awards only
the first prize of size 1.

Proof. The revenue in an all-pay auction is ∑
n−1
k=1(s

k− sk+1)kµk+1:n = ∑
n
k=1
(
k·

µk+1:n− (k−1)µk:n
)
sk with the convention that µn+1:n = 0. Observe that µ2:n >

kµk+1:n− (k− 1)µk:n for all k = 2, . . . ,n since µ2:n > µk+1:n and µk:n > µk+1:n.
Therefore, we have s1 = 1 in an optimal all-pay auction.

Observe that the auctioneer’s revenue µ2:n in an optimal all-pay auction in-
creases in the number n of players since vk:n ≤lr vk:n′ , i.e., the former is smaller
than the latter in the likelihood ratio order for n < n′.

3.2. CONCAVE AND CONVEX COST FUNCTIONS

Assume next that the cost function is either concave or convex. Define b(·)
to be the inverse cost function, that is, b(·) = c−1(·). The auctioneer’s revenue is

R = n
∫ v

v
b
(n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)dw

)
dF(v)

= n
∫ v

v
b
( n

∑
k=1

sk
∫ v

v
w[ fk:n−1(w)− fk−1:n−1(w)]dw

)
dF(v),

with the convention that f0:n−1(w) ≡ 0 and fn:n−1(w) ≡ 0. For concave cost
functions, we have:

Proposition 2. Assume that the cost function is concave. We have s1 = 1 and
s2 = · · ·= sn = 0 in an optimal all-pay auction. That is, the auctioneer’s revenue
is maximized when she awards only the first prize of size 1.

4Moldovanu et al. (2012) provided a similar proof of this proposition.
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Proof. For k = 2, . . . ,n−1,

∂R
∂ s1 −

∂R
∂ sk = n

∫ v

v
b′(·)

{∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dw

}
dF(v).

Consider
∫ v

v w[ f1:n−1(w) + fk−1:n−1(w)− fk:n−1(w)]dw. It is zero when v = v,
and µ1:n−1 +µk−1:n−1−µk:n−1 > 0 when v = v. Observe next that

∂

∂v

(∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dw

)
= v
{
(n−1)F(v)n−2 f (v)+

(n−1)!
(k−2)!(n− k)!

F(v)n−k[1−F(v)]k−2 f (v)

− (n−1)!
(k−1)!(n− k−1)!

F(v)n−k−1[1−F(v)]k−1 f (v)
}

= v f (v)F(v)n−k−1
{
(n−1)F(v)k−1 +

(n−1)!
(k−2)!(n− k)!

F(v)[1−F(v)]k−2

− (n−1)!
(k−1)!(n− k−1)!

[1−F(v)]k−1
}
.

Let x = F(v). Then, the expression in the brace becomes

(n−1)xk−1 +
(n−1)!

(k−2)!(n− k)!
x(1− x)k−2− (n−1)!

(k−1)!(n− k−1)!
(1− x)k−1

= (n−1)xk−1− (n−1)!
(k−1)!(n− k)!

(1− x)k−2[(n− k)− (n−1)x].

When x= 0, it is−(n−k) (n−1)!
(k−1)!(n−k)! < 0. When x= 1, it is n−1> 0. Inspecting

the shapes of the first term and the second term, we can easily obtain that there
exists x̂ = F(v̂) with v̂ ∈ (v,v) such that

∂

∂v

(∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dw

)
> 0

if and only if v > v̂. This implies that there exists v∗ ∈ (v,v) such that∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dw > 0

if and only if v > v∗. Since∫ v

v

∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dwdF(v)

=
1
n

µ2:n +
k−1

n
µk:n−

k
n

µk+1:n > 0,
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and b′(·) > 0 and b′′(·) ≥ 0 due to concavity of the cost function, we conclude
that ∂R/∂ s1− ∂R/∂ sk > 0 for k = 2, . . . ,n− 1 because all negative terms are
multiplied by relatively low values of b′(·) and vice versa. In addition, it is ob-
vious that ∂R/∂ s1−∂R/∂ sn > 0 since ∂ (

∫ v
v w[ f1:n−1(w)+ fn−1:n−1(w)]dw)/∂v

is nonnegative. Thus, it is optimal to set s1 = 1.

Next, consider convex cost functions. We have:

Proposition 3. If∫ v

v
b′
( n

∑
j=1

s j
∫ v

v
w[ f j:n−1(w)− f j−1:n−1(w)]dw

)
×
{∫ v

v
w[2 fk−1:n−1(w)− fk−2:n−1(w)− fk:n−1(w)]dw

}
dF(v)< 0

for k = 2, . . . ,n, then it is not optimal to not award the k-th prize. In particular,
if∫ v

v
b′
(∫ v

v
w f1:n−1(w)dw

){
2
∫ v

v
w f1:n−1(w)dw−

∫ v

v
w f2:n−1(w)dw

}
dF(v)< 0,

then it is not optimal to award only the first prize, that is, to set s1 = 1.

Proof. Observe that the first and the second inequality in the proposition respec-
tively is equivalent to ∂R/∂ sk−1−∂R/∂ sk < 0 and ∂R/∂ s1−∂R/∂ s2 < 0, and
thus the claim follows.

Example 1. Let n = 3, F(x) = x, and c(x) = x4. Calculation shows that∫ v

v
b′
(∫ v

v
w f1:n−1(w)dw

){
2
∫ v

v
w f1:n−1(w)dw−

∫ v

v
w f2:n−1(w)dw

}
dF(v)

=−0.0645.

Thus, it is optimal to award more than one prize.

4. MAXIMIZATION OF EXPECTED HIGHEST EFFORT

Suppose the auctioneer receives only the highest expenditure. That is, while
all players exert expenditures, the auctioneer gets only the highest expenditure
but discards all other expenditures. This corresponds to contests in which the
contest designer is interested in the expected highest effort. It is often the case
that only the best entry matters in many technological research contests for the
advancement of human knowledge.
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4.1. LINEAR COST FUNCTIONS

When the cost function is linear, i.e., c(xi) = xi, the auctioneer’s revenue is

E[β (v1:n)] =
∫ v

v

n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)dwdF(v)n

=
n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)[1−F(w)n]dw

=
n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)[1−F(w)]

n−1

∑
j=0

F(w) jdw

=
n−1

∑
k=1

(sk− sk+1)
n−1

∑
j=0

∫ v

v
w

(n−1)!
(k−1)!(n−1− k)!

·

F(w)n−1−k+ j[1−F(w)]k f (w)dw

=
n−1

∑
k=1

(sk− sk+1)
n−1

∑
j=0

(n−1)!
(n+ j)!

(n−1− k+ j)!
(n−1− k)!

k
∫ v

v
w fk+1:n+ j(w)dw

=
n−1

∑
k=1

(sk− sk+1)
n−1

∑
j=0

(n−1)!
(n+ j)!

(n−1− k+ j)!
(n−1− k)!

kµk+1:n+ j.

What is the optimal structure of prizes in this auction? With a proper repre-
sentation of the revenue given above, we obtain the following proposition.5

Proposition 4. We have s1 = 1 and s2 = · · ·= sn = 0 in an optimal auction. That
is, the auctioneer’s revenue is maximized when she awards only the first prize of
size 1.

To prove the proposition, let us define

ck ≡
n−1

∑
j=0

(n−1)!
(n+ j)!

(n−1− k+ j)!
(n−1− k)!

kµk+1:n+ j.

Lemma 1. c1 > ck− ck−1 for all k = 2, . . . ,n−1.

5We note that Moldovanu and Sela (2006, p. 78) stated but not actually proved this proposition.
A keen reader would recognize that it is extremely hard, if not impossible, to prove this proposition
and perform the ensuing analysis in their original framework.



10 OPTIMAL ALLOCATION OF PRIZES IN CONTESTS

Proof. Since µ2:n+ j > µk+1:n+ j and µk:n+ j > µk+1:n+ j,

c1 + ck−1− ck >

n−1

∑
j=0

(n−1)!
(n+ j)!

µk+1:n+ j

{(n−2+ j)!
(n−2)!

+(k−1)
(n− k+ j)!
(n− k)!

− k
(n−1− k+ j)!
(n−1− k)!

}
.

For a given j,

k
(n−1− k+ j)!
(n−1− k)!

= k(n−1− k+ j)(n−1− k+ j−1) · · ·(n−1− k+1)

= (n−1− k+ j)(n−1− k+ j−1) · · ·(n−1− k+1)

+(k−1)(n−1− k+ j)(n−1− k+ j−1) · · ·(n−1− k+1)

< (n−2+ j)(n−2+ j−1) · · ·(n−2+1)

+(k−1)(n− k+ j)(n− k+ j−1) · · ·(n− k+1)

=
(n−2+ j)!
(n−2)!

+(k−1)
(n− k+ j)!
(n− k)!

.

Thus, c1 > ck− ck−1.

Since the auctioneer’s revenue is ∑
n
k=1[c

k− ck−1]sk with the convention that
c0 = cn = 0, it is optimal to set s1 = 1 by the lemma. This proves the proposition.

When s1 = 1, the auctioneer’s revenue is E[β (v1:n)] =
∫ v

v w f1:n−1(w)[1−
F(w)n]dw =

∫ v
v w f1:n−1(w)dw−

∫ v
v w f1:n−1(w)F(w)ndw= µ1:n−1− n−1

2n−1 µ1:2n−1,
which goes to v− 1

2 v = 1
2 v as n goes to infinity. However, the auctioneer’s rev-

enue may increase or decrease in the number n of players.

Example 2. Let F(x) = xα . Then, the revenue is

µ1:n−1−
n−1
2n−1

µ1:2n−1 =
(n−1)α

(n−1)α +1
− (n−1)α

(2n−1)α +1
.

When α = 1 so that the distribution is uniform, it is n−1
2n . Hence, the revenue

monotonically increases in n. It is easy to check that the revenue monotonically
decreases in n when α = 6. It is also easy to check that the revenue first increases
and then decreases in n when α = 4.
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4.2. CONCAVE AND CONVEX COST FUNCTIONS

Assume next that the cost function is either concave or convex. The auction-
eer’s revenue is

R =
∫ v

v
b
(n−1

∑
k=1

(sk− sk+1)
∫ v

v
w fk:n−1(w)dw

)
dF(v)n

=
∫ v

v
b
( n

∑
k=1

sk
∫ v

v
w[ fk:n−1(w)− fk−1:n−1(w)]dw

)
dF(v)n.

For concave functions, we have:

Proposition 5. Assume that the cost function is concave. We have s1 = 1 and
s2 = · · · = sn = 0 in an optimal auction. That is, the auctioneer’s revenue is
maximized when she awards only the first prize of size 1.

Proof. For k = 2, . . . ,n−1,

∂R
∂ s1 −

∂R
∂ sk =

∫ v

v
b′(·)

{∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dw

}
dF(v)n.

The rest of the proof is the same as that of Proposition 2, except we now have to
show ∫ v

v

∫ v

v
w[ f1:n−1(w)+ fk−1:n−1(w)− fk:n−1(w)]dwdF(v)n > 0.

Observe that this inequality is in fact c1+ck−1−ck > 0, which is true by Lemma
1.

For convex functions, we have:

Proposition 6. If∫ v

v
b′
( n

∑
j=1

s j
∫ v

v
w[ f j:n−1(w)− f j−1:n−1(w)]dw

)
×
{∫ v

v
w[2 fk−1:n−1(w)− fk−2:n−1(w)− fk:n−1(w)]dw

}
dF(v)n < 0

for k = 2, . . . ,n, then it is not optimal to not award the k-th prize. In particular,
if∫ v

v
b′
(∫ v

v
w f1:n−1(w)dw

){
2
∫ v

v
w f1:n−1(w)dw−

∫ v

v
w f2:n−1(w)dw

}
dF(v)n < 0,

then it is not optimal to award only the first prize, that is, to set s1 = 1.

Proof. The proof is the same as that of Proposition 3.
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5. CONCLUSION

We have shown that it is optimal to award a single prize when cost func-
tions are linear or concave in effort, but several prizes may be optimal when cost
functions are convex. This holds both for the maximization of expected total ef-
fort and the maximization of expected highest effort. These results are obtained
in an all-pay auction framework, which significantly facilitates the analysis and
consequently makes it possible to deal with more than two prizes as well as to
characterize the optimal prize structure for the maximization of expected highest
effort. It is interesting that the same prize structure is optimal for both maxi-
mization problems. We hope that this characterization may cast some light to
the real-world contest design situations.
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