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Abstract
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A Folk Theorem under Anonymity

1. INTRODUCTION

Anonymous interactions are one of the most distinct aspects of modern societies.

Cities, for example, consist of a large number of people who do not and need not know

the identities of their neighbors, but still constantly interact with each other. In addition,

various legal restrictions also contribute to the degree of anonymity.

Anonymity may produce undesirable social outcomes, as suggested by casual observa-

tions and documented evidences.1) Under anonymity, a person may act more irresponsibly

and selfishly than when his identity is revealed, since (i) he knows that he will not be

identified (that is, there does not exist any fear of direct punishment), and (ii) the conse-

quences of his action will be assumed by the society as a whole, not by himself (that is,

the responsibility is diffused to all members of society). Therefore, cooperation among the

members may be extremely hard, if not impossible, to achieve.

Contrary to this common perception, we prove in this paper that anonymity alone does

not affect the scope for cooperation. We construct a punishment scheme which correctly

pinpoints the deviator and punishes him and only him for finite periods so that, on the one

hand, any possible gains from deviation are wiped out and, on the other hand, the society

will eventually return to cooperation. This scheme is not severely more demanding than

the usual punishment schemes for repeated games with discounting where anonymity is

not assumed, in the sense that we do not require more patient players (i.e., higher discount

factor δ).

This result can be contrasted with the Folk Theorems of random matching models,

which are also concerned with the question of supporting cooperation under anonymous

social settings.2) These models assume, besides anonymity, the decentralized information

1) See, for example, Milgram (1970) or Neal (1993) and references therein.
2) Rosenthal (1979), Rosenthal and Landau (1979), Okuno-Fujiwara and Postlewaite (1990), Kandori

(1992), Harrington (1995), and Ellison (1994).
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transmission process. In these models, players are randomly matched in pairs and each

player cannot observe the action choices of players outside of his own matching nor even

the identities of his past and present partners. Because of this special structure of the

information transmission process, a different kind of punishment scheme is used to support

cooperation. In the contagious equilibrium of these models, whenever a person observes

a deviation then he himself deviates from then on. Hence a deviation spreads through

the society like the flu, and cooperation (or the norm, as is usually called) will eventually

collapse. Therefore, each player has a strong incentive not to initiate a deviation, and this

is the logic behind the Folk Theorems of these models.

Observe that, in this equilibrium, the punishment is not directed only to the deviator;

the society as a whole assumes the consequences of the deviation since everybody in the

society will suffer from the collapse of the norm. Also, as perceived by the authors of

these models, this strategy has a drawback in that it is too fragile. A small amount of

noise or mistakes would lead to the complete collapse of the norm. In addition, due to the

complicated strategic situations arising from the decentralized information transmission

process, relatively modest progress has been made in this area. A Folk Theorem holds if

the stage game has a dominant action. (The Prisoners’ Dilemma is one such game.) But

at present we don’t know whether a Folk Theorem will hold or not for more general games.

In contrast, we prove a Folk Theorem in this paper which holds for more general games.

Specifically, every feasible, strictly individually rational payoff vector can be supported

as a sequential equilibrium outcome when the stage game satisfies a certain symmetry

assumption.3) Also, as noted earlier, only the deviator will be punished and the society

will resume cooperation after the punishment. This result is due to the theoretically more

tractable structure that information is transmitted in some centralized way. That is, even

though players can’t observe the identities of other players, they can still learn what is

happening in the society without much delay. We provide explicit repeated game strategies

3) See Assumption 1 in the next section and the discussion following it.
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for both the observable and the unobservable mixed action cases, which are more or less

the standard strategies found in the usual Folk Theorems. In fact, we follow the proofs

of standard Folk Theorems (as in Fudenberg and Maskin (1986) or Abreu, Dutta, and

Smith (1994)) as close as possible to demonstrate that essentially the same strategies can

be used even under anonymity. In this respect, this paper is a re-interpretation of the Folk

Theorems.

In the next section, we present the model. We first prove a Folk Theorem with the

assumption that mixed actions are observable, which is the content of section 3. In section

4, we relax the observability assumption and suppose that only the actual realizations

of mixed actions are observable, and prove a Folk Theorem. Discussion of the related

literature is given in section 5. Note especially the discussion of the relationship between

the present paper and Fudenberg, Levine, and Maskin (1994).

2. THE MODEL

There are n(n ≥ 3) players. In each period t (t = 0, 1, . . .), players play the stage game

G =
(

I, (Ai)n
i=1, (ui)n

i=1

)

(where I is the set of players, Ai is the finite set of pure actions for

player i, and ui is the stage game payoff function from A = ×n
i=1Ai to IR). Let u = ×n

i=1ui.

A mixed action αi for player i is a randomization over Ai. Let ∆(Ai) denote the set of

mixed actions for i. And let ∆ = ×n
i=1∆(Ai) denote the set of mixed action profiles, with

a typical element α = (α1, . . . , αn). The function u can be extended as a function from ∆

to IRn in the obvious way, and is continuous. Two points are worth mentioning: First, the

set ∆(Ai) naturally includes pure actions. Second, we can alternatively think of ∆(Ai),

which is compact and convex, as the set of player i’s pure actions.

Following the convention, let V be the convex hull of the set of feasible payoff vectors

{u(a) : a ∈ A}. Let vi = minα−i maxαi ui(αi, α−i) be player i’s minimax value, and

αi = (αi
i, α

i
−i) be a minimax profile against player i. The set V ∗ = {v ∈ V |vi ≥ vi for

all i} is called the set of feasible, individually rational payoff vectors, and similarly the set
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V ∗∗ = {v ∈ V |vi > vi for all i} is called the set of feasible, strictly individually rational

payoff vectors. We normalize vi = 0 for all i. We will assume the availability of public

randomization, as is the convention. Consequently we will deal only with mixed action

profiles explicitly. This practice is not restrictive. Fudenberg and Maskin (1991) prove that

players can replace the public randomization with a deterministic sequence of actions.

We assume that the game is symmetric and anonymous in the sense defined below.

For that, let us first introduce some notation: Let X be a finite set. By a permutation

π of X, we mean a bijection π : X → X. We extend this notation from sets to ordered

k-tuples in the following natural way. If y = (y1, . . . , yk) and if π is a permutation of

{1, . . . , k}, then we say that (yπ(1), . . . , yπ(k)) is a permutation of y and denote it by π(y).

In particular,

Definition 1: Let J ⊆ I be a subset of players with m members, and π be a permu-

tation of J .

(a) Given a mixed action profile αJ = (αj(1), . . . , αj(m)) for J , a permutation π(αJ ) of αJ

is (απ(j(1)), . . . , απ(j(m))).

(b) Given a payoff vector vJ = (vj(1), . . . , vj(m)) for J , a permutation π(vJ ) of vJ is

(vπ(j(1)), . . . , vπ(j(m))).

Assumption 1: (Symmetry)

(1) For all i, j in I, we have Ai = Aj .

(2) For all a ∈ A, and for all permutation π(a) of a,

ui(π(a)) = uπ(i)(a).4)

Assumption 1(2) says that if player i acts like player π(i) (i.e., i’s action is π(ai)) for

all i, then i’s payoff from that action profile is equal to the π(i)’s payoff when players play

the action profile a.

4) This can be weakened so that we only require ui(π(a)) = ci,π(i)uπ(i)(a) + di,π(i) where ci,π(i) and
di,π(i) are constants and ci,π(i) > 0. That is, an affine transformation of utilities can be taken care of.
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Assumption 1 can be relaxed to include more general games in such a way that the

players are divided into k subgroups (that is, there are k different types of players) and the

symmetry assumption is imposed on each subgroup, as long as the actions available to one

group are distinct from the actions of other groups. One example is the case when there

are two groups, buyers and sellers, and buyers (sellers) are identical among themselves.

Since this extension is straightforward conceptually, but adds unnecessary complication in

stating and deriving the results, we will work only with the simplest case.

For a given action profile α ∈ ∆, let

P (α) ={α′ ∈ ∆ : α′ is a permutation of α}

={π(α) : π is a permutation of I}.

Similarly, for α−i ∈ ∆−i, let

P (α−i) ={α′−i ∈ ∆−i : α′−i is a permutation of α−i}

={π(α−i) : π is a permutation of I − {i}}.

Then we have

Lemma 1: ∀i,∀α = (αi, α−i),

ui(αi, α−i) = ui(αi, α′−i) for all α′−i ∈ P (α−i).

Proof: For any permutation α′−i ∈ P (α−i), let α′ = (αi, α′−i). Then α′ is a permuta-

tion of α with π(i) = i. Thus, by Assumption 1, ui(α′) = ui(π(α)) = uπ(i)(α) = ui(α).

Q.E.D.

Lemma 2: V is symmetric, i.e.,

v = (v1, . . . , vn) ∈ V ⇒ π(v) ∈ V

where π is any permutation of I.

Proof: Let α be an action profile with u(α) = v. Then π(α) will give π(v). To be

more explicit, we want to show (vπ(1), . . . , vπ(n)) ∈ V whenever (v1, . . . , vn) ∈ V . Think

of an action profile in which player i plays απ(i) for all i = 1, . . . , n. Then we have
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ui(απ(1), . . . , απ(n)) = uπ(i)(α1, . . . , αn) = vπ(i) by Assumption 1. So, (vπ(1), . . . , vπ(n)) ∈

V . Q.E.D.

Assumption 2: (Anonymity) Players observe the action profile at the end of each

period, but do not observe the identities of other players.

Thus, Assumption 2 means that player i cannot distinguish among the elements of

P (α−i). Note that we assume players observe the mixed action profile, not the realization

of it. As we mentioned in the introduction, this assumption will be maintained up to the

end of section 3. We can conceive of a situation where, although players cannot tell the

identity of a player who played a particular action by observing the action profile, each

player is still able to do that by looking at his or her own payoff. This is ruled out by

Lemma 1. Therefore, our formulation is the extreme and simple case to analyze the effect

of anonymity. (The intermediate cases could as well be analyzed without much difficulty.

The conclusion would not be affected.)

Assumption 2 in the present form is not necessary. What is essentially needed is that

a deviation will be accurately detected by all players (although they don’t know exactly

who the actual deviator is). So, there are many alternative ways to incorporate this

requirement. For example, we may assume that players observe some aggregate variable

which will be determined by the action profile.

Now let us turn in detail to the repeated game. In each period t, the stage game is

played, resulting in a public outcome5) yt = [αt
1, . . . , α

t
n], where the notation [. . .] signifies

the fact that the order is not relevant. The public history at the end of period t is ht =

(y0, . . . , yt). Player i’s private history at the end of period t is ht
i = (α0

i , . . . , α
t
i). A strategy

σi for player i is a sequence of functions {σt
i}∞t=0, where σ0

i ∈ ∆(Ai) and σt
i for t ≥ 1 maps

each pair (ht−1, ht−1
i ) to an element of ∆(Ai).

5) “Public outcome” here may also be called an “action profile” if we agree that only the collection of
actions itself but not the order of them is relevant. In particular, it should not be thought of as a payoff
vector.
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Each strategy profile σ = (σ1, . . . , σn) generates a probability distribution over histo-

ries in the obvious way, and consequently generates a distribution over the sequences of the

stage-game payoff vectors. Players discount future payoffs with a common discount factor

δ. Thus if {gt
i} is player i’s sequence of stage-game payoffs, his objective in the repeated

game is to maximize the expected value of the average payoff

(1− δ)
∞
∑

t=0

δtgt
i .

Due to the informational restriction we gave (i.e. anonymity), each information set

is not a singleton. That implies that the repeated game has no proper subgame, and so

subgame-perfection is too weak a solution concept to employ. Instead, we will use the

sequential equilibrium concept (Kreps and Wilson (1982)) in this paper6): A sequential

equilibrium is a strategy profile σ together with a belief system µ such that each player’s

strategy is sequentially rational and the belief system is consistent. Now we impose the

following condition on players’ payoffs.

Assumption 3: (Non-equivalent payoffs) Not all players have equivalent payoffs,

i.e., there exist k, l ∈ I (k 6= l) such that

uk(a) 6= ul(a) for some a ∈ A.

It is well known that, even without anonymity, we have to impose certain condi-

tion on payoffs to get a Folk Theorem for the case of three or more players. Fudenberg

and Maskin (1986) introduced the full dimensionality condition: The set V ∗∗ of feasible,

strictly individually rational payoff vectors must have dimension n (the number of play-

ers), or equivalently, a nonempty interior. Abreu, Dutta, and Smith (1994) weakened this

condition to the non-equivalent utilities (NEU) condition. A stage game G satisfies the

NEU condition if for all i and j in I, there do not exist scalars c, d where d > 0 such that

ui(a) = c + duj(a) for all a ∈ A.

6) If we interpret the compact set ∆(Ai) as the set of pure strategies, then there arises a problem
in defining the interior of the consistent beliefs. In that case, we can instead use a weaker concept, e.g.
perfect Bayesian equilibrium concept (Fudenberg and Tirole (1991)).
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Assumption 3 is apparently weaker than the NEU condition. On the other hand, we

show in Proposition 1 below that Assumption 3 implies full dimensionality if the game

is symmetric (Assumption 1). Therefore, for symmetric games, Assumption 3, the NEU

condition, and the full dimensionality condition are all equivalent. Also observe that the

only class of games Assumption 3 excludes is the games of pure coordination, in which all

players’ payoffs are the same whatever the action profile is (i.e., V ∗∗ has dimension 1).

The main theorem will be vacuous if V ∗∗ = ∅. So we will assume V ∗∗ is not empty,

and then we have:

Proposition 1: Suppose the game is symmetric (Assumption 1) and the set V ∗∗ is

not empty. Then Assumption 3 implies the full dimensionality of V ∗∗.

Proof: Take a point v′ in V ∗∗. Then v′ � 0, i.e. v′i > 0 for all i. Now by As-

sumption 3, there exist k, l ∈ I(k 6= l) and a ∈ A such that uk(a) < ul(a). Let

v = u(a). Then vk < vl. Think of the set W of all the permutations of v. That is,

W = {π(v) : π is a permutation of I}.

Since V is symmetric by Lemma 2, the set W is contained in V . Moreover, the convex

hull of W , co(W ), is also contained in V since V is convex. Observe that co(W ) is at

least (n− 1)-dimensional since it contains all the permutations of v. In fact, it is (n− 1)-

dimensional because it is contained in the hyperplane H = {w ∈ IRn :
∑n

i=1 wi =
∑n

i=1 vi}.

Since the hyperplane H cannot contain both 0 and v′, the convex hull of co(W ) together

with 0 and v′, which is co(co(W ), 0, v′), is n-dimensional. This set is obviously contained

in V since V is convex, giving us the conclusion that V is n-dimensional. Q.E.D.

3. THE FOLK THEOREM UNDER OBSERVABLE MIXED ACTIONS

In this section, we will prove a Folk Theorem under anonymity with the assumption

that mixed actions are observable. That is, every feasible, strictly individually rational

payoff vector is a sequential equilibrium outcome of the repeated game when players are

sufficiently patient.
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The intuition for the proof is as follows. The main observation in the proof is that,

although players do not know who has deviated, they still know that a deviation has

occurred and, in addition, whether he himself has deviated or not. This observation,

together with the assumption of symmetry which implies that the punishing action can

be constructed to be symmetric across the players, makes it possible for the punishers

to coordinate to punish the deviator without knowing the identity of the deviator. The

deviator, in turn, has an incentive to cooperate to the punishment since the punishment

scheme is designed to punish the deviator (and any deviator in punishment phases) even

without the knowledge of the identity of the deviator.

We say an action profile α−i for players j 6= i symmetric when the actions are the

same for all players j 6= i. Then we have:

Lemma 3: There exists a symmetric αi
−i such that αi = (αi

i, α
i
−i) is a minimax

profile against player i.

Proof: Let α = (αi, α−i) be a minimax profile for i, i.e., ui(αi, α−i) = vi(= 0). Now

let

αi
−i =

1
m

∑

α′−i∈P (α−i)

α′−i ,

where m is the number of elements in P (α−i). Then αi
−i is symmetric, and we have

ui(αi, αi
−i) = 1

m

∑

α′−i∈P (α−i) ui(αi, α′−i) = 1
mmui(αi, α−i) = ui(αi, α−i) = vi(= 0) by

Lemma 1. The action αi is indeed a maximizer against αi
−i: Suppose there is α′i 6= αi

such that ui(α′i, α
i
−i) > ui(αi, αi

−i). But this implies ui(α′i, α−i) > ui(αi, α−i), which is a

contradiction. Q.E.D.

We have the following two propositions which will be used in the proof of Theorem 1.

Proposition 2: There exist (αi = (αi
i, α

i
−i))

n
i=1 such that

(1) ∀i, ui(αi) = vi(= 0).

(2) ∀i, αi
−i is symmetric and
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(3) Each αi is a permutation of every other.

Proof: Let α1 = (α1
1, α

1
−1) be as in Lemma 3 for player 1. Now let (αi = (αi

i, α
i
−i))

n
i=1

be the permutations of it. Q.E.D.

Proposition 3: For any v ∈ V ∗∗, there exist x1, x2, . . . , xn ∈ V ∗∗ such that for all i,

(1) xi � v.

(2) For some real ε > 0, we have xi = (x, . . . , x, x − ε, x, . . . , x) where x − ε is i-th

component.

(3) There exists a symmetric α̃i
−i such that xi = u(α̃i

i, α̃
i
−i).

Proof: Since v ∈ V ∗∗ and V ∗∗ has full dimension (Proposition 1) and is symmetric

(Lemma 2), there exist a vector x = (x, . . . , x) ∈ V ∗∗ and ε > 0 such that every x′ in

the open ball B(x, 2ε) is strictly less than v (x′ � v) and x′ ∈ V ∗∗. Now take xi =

(x, . . . , x, x − ε, x, . . . , x) where x − ε is i-th component. Then xi ∈ B(x, 2ε). Thus what

remains to prove is part (3).

We will prove for x1. Since x1 ∈ V ∗∗, there exists γ = (γ1, γ−1) such that x1 =

u(γ1, γ−1). Now let

α̃1
−1 =

1
m

∑

γ′−1∈P (γ−1)

γ′−1 ,

and α̃1
1 = γ1. Then u1(α̃1

1, α̃
1
−1) = 1

mmu1(γ1, γ−1) = u1(γ1, γ−1) = x1
1 by Lemma 1. For

k ≥ 2, a moment’s thought will convince the reader that uk(α̃1
1, α̃

1
−1) = uk(γ1, γ−1) = x1

k

since x1 is symmetric in players 2, 3, . . . , n and the game is symmetric (Assumption 1).

xk’s for k ≥ 2 are just permutations of x1. Q.E.D.

Now we have our main theorem.

Theorem 1: (The Folk Theorem under Observable Mixed Actions.) Suppose

Assumptions 1,2, and 3 hold. Then, for any payoff vector v in V ∗∗, there exists a discount

factor δ < 1 such that, for all δ ∈ (δ, 1), v is a sequential equilibrium payoff vector of the

repeated game.
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Proof: Fix v ∈ V ∗∗. Let α = (α1, . . . , αn) be an action profile such that u(α) = v.

By Proposition 2, we can find minimax profiles α1, . . . , αn with the properties stated

there. And by Proposition 3, we can also find payoff vectors x1, x2, . . . , xn ∈ V ∗∗ with the

properties stated there.

We will use the fact that even though players don’t know exactly who has deviated

when a deviation occurred, still each of them knows that a deviation has occurred by

looking at the public outcome yt−1 and, in addition, whether he himself has deviated or

not. For this purpose, let y(α) = [αi
1, α

i
2, . . . , α

i
n]. By construction, y(α) is the same for

all i and

y(α) = [αd, αp, . . . , αp
︸ ︷︷ ︸

(n−1) times

].

Similarly,

y(α̃) = [α̃d, α̃p, . . . , α̃p
︸ ︷︷ ︸

(n−1) times

].

Now we will give a (repeated game) strategy for player i which will support v as a

sequential equilibrium outcome.7) This strategy will be described in a Markovian sense

such that the game will proceed to one of the following three “states” depending on the

current state and the public outcome in the previous period. For expositional clarity,

we will imagine that every player keeps a private tag (known only to himself) until it is

replaced by another. This tag is either “deviator”, or “punisher”, or “0”. Initially, every

player’s tag is “0”.

Start in state v.

state v: Play αi.

[1] When yt−1 is different from [α1, . . . , αn] by exactly one component: If player i himself

is a deviator, then update his tag to “deviator”; otherwise update his tag to “pun-

isher”. Go to state y(α). (If a player, say j, has deviated, then yt−1 is different from

7) The belief part of the sequential equilibrium is implied by the description of the strategy in an
obvious way.
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[α1, . . . , αn] by exactly one component, and so everybody knows that the tags are

updated and also what his own updated tag is.)

[2] In all other cases: Stay in state v.

state y(α): If his tag is “deviator”, then play αd. If his tag is “punisher”, then play αp.

[1] When yt−1 is different from y(α) by exactly one component: If player i himself is a

deviator, then update his tag to “deviator”; otherwise update his tag to “punisher”.

Go to state y(α). (Player i might have had a tag of “deviator” or “punisher” when

the deviation occurred. As before, players know the fact that the tags are updated

and what their own updated tags are.)

[2] In all other cases: With probability q, stay in state y(α) and with probability 1 − q,

go to state y(α̃).

state y(α̃): If his tag is “deviator”, then play α̃d. If his tag is “punisher”, then play α̃p.

[1] When yt−1 is different from y(α̃) by exactly one component: If player i himself is a

deviator, then update his tag to “deviator”; otherwise update his tag to “punisher”.

Go to state y(α).

[2] In all other cases: Stay in state y(α̃).

Now we show that no one-shot deviation from the specified strategy by any player in

any state is profitable.8) Define b = maxi maxa∈A ui(a) and w = u2(α1). And also take

0 ≤ q < 1 such that

b <
2− q
1− q

(x− ε) (∗)

holds.

state y(α): The deviator obviously does not have an incentive to deviate again since,

by deviating, he will get at most 0 in that period and go back to state y(α) with the same

8) The verification of this strategy below closely follows Abreu, Dutta, and Smith (1994).
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tag (“deviator”) next period. More specifically, if he conforms to the specified strategy, he

will get W d = δ(qW d + (1− q)(x− ε)), i.e.,

W d =
δ(1− q)
1− δq

(x− ε).

(W d is the repeated game average payoff when in state y(α).) But if he deviates, he will

at most get δW d. Thus, he has no incentive to deviate.

For a punisher, if he conforms, his average payoff is

1− δ
1− δq

w +
δ(1− q)
1− δq

x.

If he deviates, he gets at most

b + δW d = (1− δ)b + δ
δ(1− q)
1− δq

(x− ε).

As δ → 1, the former expression goes to x, while the latter to x− ε. Thus, for sufficiently

large δ, punishers do not have an incentive to deviate.

state y(α̃): First, for the deviator. The maximum gain (in average payoff) from

deviating in this state is

(1− δ)b + δW d − (x− ε)

=(1− δ)[b− 1 + δ − δq
1− δq

(x− ε)].

For δ near 1, this expression is negative due to (*). So, the deviator does not want to

deviate. It is also clear that the punishers don’t want to deviate either, since the payoff a

punisher receives (x) is greater than that of a deviator (x− ε) by construction.

state v: For each player i,

vi >(1− δ)b + δW d

=(1− δ)b + δ
δ(1− q)
1− δq

(x− ε)

for large δ, since vi > x− ε by construction.
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We have shown that no player has an incentive to make a one-shot deviation from any

state. Then, the reader can easily see that no (possibly infinite) sequence of deviations is

profitable. Therefore, the proposed strategy profile is a sequential equilibrium.9) Q.E.D.

4. THE FOLK THEOREM UNDER UNOBSERVABLE MIXED ACTIONS

In this section, we need to make a slight change in our notation: the public outcome yt

is no longer a list [αt
1, . . . , α

t
n] of mixed action profile, but a realization of it, say [at

1, . . . , a
t
n]

in which at
i’s are pure actions. The only significant use of the observable mixed actions

assumption is when we suppose the minimaxing actions are observable. For other cases,

we can replace any particular mixed action profile with a deterministic sequence of pure

action profiles. Consequently, what we prove below is mainly about how to make the

punishers in the minimaxing stage be indifferent among the pure actions in the support of

the minimaxing action αp. First we have the following corollary of Proposition 3.

Corollary 1: For any v ∈ V ∗∗, there exist x1, x2, . . . , xn ∈ V ∗∗ and x1
ε , x

2
ε , . . . , x

n
ε

∈ V ∗∗such that for all i,

(1) xi � v, xi
ε � v.

(2) For some real ε > 0, we have xi = (x, . . . , x, x − ε, x, . . . , x) and xi
ε = (x + ε, . . . , x +

ε, x− ε, x + ε, . . . , x + ε) where x− ε is i-th component.

(3) There exists a symmetric α̃i
−i such that xi = u(α̃i

i, α̃
i
−i).

(4) There exists a symmetric α̂i
−i such that xi

ε = u(α̂i
i, α̂

i
−i).

Proof: The proof of Proposition 3 implies this. Q.E.D.

9) A keen reader would observe that there exists a history in which more than one player simultaneously
deviated, but still the public outcome resulting from it is identical to the one resulting from a unilateral
deviation. Then the strategy proposed above may not be optimal; some players may have better knowledge
about the actual history than others, and hence they may exploit it. We simply point out that there is a
sequential equilibrium following it. Observe that no sequence of unilateral one-shot deviations will lead to
such a history.
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Theorem 2: (The Folk Theorem under Unobservable Mixed Actions) Sup-

pose Assumptions 1,2, and 3 hold. Then, for any payoff vector v in V ∗∗, there exists a

discount factor δ < 1 such that, for all δ ∈ (δ, 1), v is a sequential equilibrium payoff vector

of the repeated game.

Proof: Fix v ∈ V ∗∗. Let α = (α1, . . . , αn) be an action profile such that u(α) = v.

By Proposition 2, we can find minimax profiles α1, . . . , αn with the properties stated

there. And by Corollary 1, we can also find payoff vectors x1, x2, . . . , xn ∈ V ∗∗ and

x1
ε , x

2
ε , . . . , x

n
ε ∈ V ∗∗ with the properties stated there. We can, without loss of generality,

assume α, (α̃i)i∈I , (α̂i)i∈I are all pure action profiles. Moreover, we can choose αi
i, i.e., αd

to be a pure action.

Now suppose αi
j for j 6= i, i.e., αp is a nontrivial mixed action. Let a1, . . . , am be the

pure actions used in αp, with the property that

uj(ak−1;αd, αp, . . . , αp
︸ ︷︷ ︸

(n−2) times

) ≤ uj(ak;αd, αp, . . . , αp
︸ ︷︷ ︸

(n−2) times

)

for all k = 2, . . . , m (ak−1 and ak are player j’s actions).

Let rk = uj(ak; αd, αp, . . . , αp) − uj(a1; αd, αp, . . . , αp). Then rk can be interpreted

as a gain from playing ak instead of a1. Let Nk be the total number of ak in yt−1, the

realization of y(α) in period t − 1. Then each yt−1 induces a vector (N1, . . . , Nm) with

N1 + . . . + Nm = n − 1. (If αd, which is a pure action, is ak in the support of αp, then

subtract 1 from Nk.) Let z0 = (n − 1, 0, . . . , 0
︸ ︷︷ ︸

(m−1) times

) and for any vector z = (N1, . . . , Nm),

calculate Sz = r2N2 + r3N3 + . . . + rmNm. Now for each z, define a probability pz by

(1− δ)Sz = δ(pz0 − pz)ε. (∗∗)

As δ → 1, there exists {pz} which satisfy (∗∗).

As in Theorem 1, let

y(α) = [αd, αp, . . . , αp
︸ ︷︷ ︸

(n−1) times

], y(α̃) = [α̃d, α̃p, . . . , α̃p
︸ ︷︷ ︸

(n−1) times

].
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Also let

y(α̂) = [α̂d, α̂p, . . . , α̂p
︸ ︷︷ ︸

(n−1) times

].

The following is a sequential equilibrium strategy for i which supports v. As before, every

player’s tag is “0” initially.

Start in state v.

state v: Play αi.

[1] When yt−1 is different from [α1, . . . , αn] by exactly one component: If player i him-

self is the deviator, then update his tag to “deviator”; otherwise update his tag to

“punisher”. Go to state y(α).

[2] In all other cases: Stay in state v.

state y(α): If his tag is “deviator”, then play αd. If his tag is “punisher”, then play αp.

case 1. αd = ak for some k = 1, . . . , m.

[1] When no component of yt−1 lies outside of the support of αp, with the induced vector

z: With probability q stay in state y(α), with probability 1− q − pz go to state y(α̃),

and with probability pz go to state y(α̂).

[2] When one component of yt−1 lies outside of the support of αp: If player i himself is a

deviator, then update his tag to “deviator”; otherwise update his tag to “punisher”.

Go to state y(α).

[3] In all other cases: With probability q stay in state y(α) and with probability 1− q go

to state y(α̃).

case 2. αd 6= ak for all k = 1, . . . ,m.

[1] When one component of yt−1 lies outside of the support of αp and that component is

αd, with the induced vector z: With probability q stay in state y(α), with probability

1− q − pz go to state y(α̃), and with probability pz go to state y(α̂).
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[2] When one component of yt−1 lies outside of the support of αp and that component is

different from αd, or no component lies outside of the support of αp: Go to state y(α)

with the ongoing tags.

[3] When two components of yt−1 lie outside of the support of αp and that one of them

is αd: If player i himself is a deviator, then update his tag to “deviator”; otherwise

update his tag to “punisher”. Go to state y(α).

[4] In all other cases: With probability q stay in state y(α) and with probability 1− q go

to state y(α̃).

state y(α̃): If his tag is “deviator”, then play α̃d. If his tag is “punisher”, then play α̃p.

[1] When yt−1 is different from y(α̃) by exactly one component: If player i himself is a

deviator, then update his tag to “deviator”; otherwise update his tag to “punisher”.

Go to state y(α).

[2] In all other cases: Stay in state y(α̃)

state y(α̂): If his tag is “deviator”, then play α̃d. If his tag is “punisher”, then play α̃p.

[1] When yt−1 is different from y(α̂) by exactly one component: If player i himself is a

deviator, then update his tag to “deviator”; otherwise update his tag to “punisher”.

Go to state y(α).

[2] In all other cases: Stay in state y(α̂).

Since we assumed that αi, α̃d, α̃p, α̂d, and α̂p are all pure actions, the proof in

Theorem 1 passes over in those states. All we need to show is that punishers are indifferent

among a1, . . . , am so that they will play the mixed action αp.

The punisher j’s average payoff from ak (k = 1, . . . ,m) is

(1− δ)uj(ak; αd, αp, . . . , αp) + δ
{

q
[ 1− δ
1− δq

w +
δ(1− q)
1− δq

x
]

+ (1− q − pz)x + pz(x + ε)
}

Playing k′ instead of k will result in the change of this payoff by the amount of

(1− δ)(rk′ − rk) + δ(pz′ − pz)ε,
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where z′ is a vector (N ′
1, . . . , N

′
m) which is different from z = (N1, . . . , Nm) only in that

N ′
k′ = Nk′ + 1 and N ′

k = Nk − 1. So, Sz′ − Sz = rk′ − rk. Then we have

(1− δ)(rk′ − rk) + δ(pz′ − pz)ε

=(1− δ)(rk′ − rk) + δ(pz0 − pz)ε− δ(pz0 − pz′)ε

=(1− δ)(rk′ − rk) + (1− δ)Sz − (1− δ)Sz′ (by (∗∗))

= (1− δ)(rk′ − rk)− (1− δ)(rk′ − rk)

= 0.

Thus punishers are indifferent among a1, . . . , am. Q.E.D.

5. DISCUSSION AND RELATED LITERATURE

The framework of the present paper is subsumed in the very general framework of

Fudenberg, Levine, and Maskin (1994, FLM hereafter). Specifically, the unordered action

profile [α1, . . . , αn] is a public signal in FLM. Then it is easy to verify that the present

structure satisfies the pairwise full rank (Condition 6.2.) and the individual full rank

(Condition 6.3.) of FLM. Therefore, the Folk Theorem of FLM applies.

The present paper, however, extends FLM’s result in three nontrivial ways.10) First,

their framework is confined to the finite pure actions case. In contrast, our result can

be applied equally well to a continuum of actions case, which is often the case in many

economic situations: Interpret the set ∆(Ai) of mixed actions as the set of pure actions.

Then Theorem 1 of the present paper covers this case exactly. Second, their result pertains

only to the interior of the set V ∗∗ of feasible, strictly individually rational payoff vectors.

In particular, efficient payoff vectors are not shown to be supported. Since the interest

in Folk Theorems arises largely due to the possibility of efficient outcomes, it would be

nice to have a result supporting them. We prove here a Folk Theorem which applies to

10) This is not to say that we extend FLM’s result for the general environments. We extend their result
for this special case of anonymity.
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the whole set V ∗∗. Lastly, and perhaps most importantly, we provide explicit repeated

game strategies which are simple and intuitive, while they are not directly concerned with

strategies. As we explained in the Introduction, we believe that what matters more in Folk

Theorems is not whether people can sustain cooperation but how they can.

Green (1980), Sabourian (1990), and Levine and Pesendorfer (1995) show that if the

anonymity assumption is incorporated by assuming that players can only observe some

noisy aggregate public outcome (like prices), then the set of repeated game equilibria

shrinks to the set of stage game Nash equilibria as the number of players increases to infinity

provided some condition is imposed on the aggregate public outcome. This condition is

that, roughly speaking, the informativeness of the outcome tends to be negligible as each

player becomes arbitrarily small. The present paper differs from the papers mentioned in

that we assume a deterministic, rather than noisy, public outcome about the past play,

which is yt = [αt
1, . . . , α

t
n], and that we are concerned with determining the whole set of

payoff vectors which can be supported as sequential equilibrium outcomes of the repeated

game. Observe that first, as mentioned in section 2, we can easily extend our results to

cases where the public outcome is constrained to be aggregate, say yt =
∑

i αt
i and second,

our result is independent of the number of players.
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