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68 ON ASYMMETRY IN ALL-PAY AUCTIONS

1. INTRODUCTION

All-pay auctions have been used to model such diverse activities as tourna-

ments in job promotions and in sports, R&D races, political campaigns, lobby-

ing, and rent seeking. All-pay auctions, also known as deterministic contests or

perfectly discriminating contests, are a particular type of contest in which players

exert irreversible expenditures and only the player with the highest expenditure

wins the prize.1

Players are usually not symmetric in these activities. That is, some players

have higher valuations and/or abilities than others. The objective of this paper

is to examine how asymmetry among players affects total expenditures or rent

dissipation in all-pay auctions. In particular, we decompose a change in players’

valuations into the absolute change and the relative change, and analyze how

these changes affect total expenditures. Observe that a change in a player’s valu-

ation entails two related but conceptually distinct changes: (i) the sum of players’

valuations changes and (ii) the ratios among players’ valuations change. We call

the respective effects of the first and second changes on total expenditures as the

absolute effect and the relative effect. As far as we know, this is the first paper

that decomposes these two effects and examines the relative effect in particular.

In other words, we isolate and examine the relative effect from the total effect.2

We first show that, for all-pay auctions under complete information, the ab-

solute effect is always positive whereas the relative effect is always negative.

That is, an increase in the sum of players’ valuations increases total expendi-

tures but an increase in the asymmetry among players’ valuations decreases total

expenditures. As for all-pay auctions under incomplete information, the abso-

lute effect continues to be positive but the relative effect is zero when players

are initially symmetric and negative when players are (slightly) asymmetric. We

also study the optimal all-pay auction design problem and show that the relative

effect as well as the absolute effect may be positive.

1There is a vast literature on contests. For a relatively recent survey, see Konrad (2009). There
are other types of contests, such as Tullock (1980) contests and rank-order tournaments à la Lazear
and Rosen (1981).

2See the last section for further discussion.
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Asymmetric all-pay auctions under complete information have been ana-

lyzed rather thoroughly: See Baye et al. (1996) and Siegel (2009). In con-

trast, asymmetric all-pay auctions under incomplete information are very hard

to tackle.3 Amann and Leininger (1996) provided a characterization of equilib-

rium for two-player asymmetric all-pay auctions, and Kirkegaard (2012, 2013)

recently analyzed a tractable two-player asymmetric all-pay auction model. Our

analysis on all-pay auctions under incomplete information builds on this model.

The plan of the paper is as follows. Section 2 discusses complete information

all-pay auctions, Section 3 discusses incomplete information all-pay auctions,

and Section 4 discusses the optimal all-pay auction design problem. Section 5

concludes.

2. ALL-PAY AUCTIONS UNDER COMPLETE INFORMATION

Consider complete information all-pay auctions in which two players exert

irreversible expenditures and the player with the highest expenditure wins the

prize. Let vi for i = 1,2 denote player i’s valuation for the prize. These val-

uations are common knowledge. If player i exerts an expenditure xi, then his

payoff is vi− xi when he wins the prize and −xi otherwise. Let v1 ≥ v2 without

loss of generality. Then, player 1’s expected expenditures, player 2’s expected

expenditures, and the total expected expenditures in equilibrium are given by,

respectively,4

Ec
1(v1,v2) =

v2

2
, Ec

2(v1,v2) =
v2

2
2v1

, and Rc(v1,v2) =
v2

2
+

v2
2

2v1
.

Observe that Rc(v1,v2) decreases when v1 increases or v2 decreases. Thus, as

asymmetry increases, competitiveness between players and total expenditures

(or, rent dissipation) diminish.

Note that a change in vi entails two kinds of change: the sum v1+v2 changes

and the ratio between v1 and v2 changes. We can decompose any change in

3The same is true for other asymmetric auction formats.
4See Hillman and Riley (1989) and Baye et al. (1996) for detailed equilibrium analysis.
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the valuation vector (v1,v2) into these changes. To see this, define a measure

of (relative) asymmetry r ≡ v2/v1, and suppose v1 increases to v′1. Then, the

measure changes from r = v2/v1 to r′ = v2/v′1. Let us find (v′′1,v
′′
2) that satisfies

(i) v′′1 + v′′2 = v1 + v2, and (ii) v′′2/v′′1 = r′ = v2/v′1. We get

(v′′1,v
′′
2) =

( 1
1+ r′

(v1 + v2),
r′

1+ r′
(v1 + v2)

)
=

v1 + v2

v′1 + v2
(v′1,v2).

Hence, a change from (v1,v2) to (v′1,v2) can be decomposed into a change from

(v1,v2) to (v′′1,v
′′
2) and then a change from (v′′1,v

′′
2) to (v′1,v2). The first change

is related to the relative effect: the ratio between valuations changes while the

sum of valuations remains constant. The second change is related to the absolute

effect: observe that (v′1,v2) is obtained through multiplying the vector (v′′1,v
′′
2)

by the scalar (v′1 + v2)/(v1 + v2) while keeping the ratio r′ constant.

Since

Rc(v′′1,v
′′
2) =

v1 + v2

v′1 + v2

(v2

2
+

v2
2

2v′1

)
=

v1 + v2

v′1 + v2
Rc(v′1,v2)< Rc(v′1,v2)< Rc(v1,v2),

we can see that the relative effect decreases total expenditures, and the absolute

effect increases total expenditures but with less magnitude.

While the discussion above decomposes a change in one player’s valuation

into the relative change and the absolute change, we can actually express total ex-

penditures purely in terms of the absolute effect and the relative effect. Observe

that, for any (v1,v2), we can define the sum a≡ v1 + v2 and the ratio r ≡ v2/v1.

Conversely, for any (a,r), we may let v1 = a/(1+ r) and v2 = ar/(1+ r). Thus,

(a,r) is a one-to-one transformation of (v1,v2). We then have

Rc =
v2

2

(
1+

v2

v1

)
=

ar
2
.

Thus, the absolute effect is positive whereas the relative effect is negative be-

cause
∂Rc

∂a
=

r
2
> 0,

∂Rc

∂ r
=

a
2
> 0,

and r decreases as asymmetry increases.
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Summarizing the discussion, we have:

Proposition 1. For all-pay auctions under complete information, (i) the absolute

effect is positive, whereas (ii) the relative effect is negative.

3. ALL-PAY AUCTIONS UNDER INCOMPLETE INFORMATION

We now consider all-pay auctions under incomplete information. Thus, play-

ers’ valuations are private information, and they are independently distributed

according to the distribution functions F1 and F2. The density function fi for

player i is positive on its respective support [0, v̄i]. Assume without loss of gen-

erality that v̄1 ≥ v̄2.

For the purpose of demonstration, let us first consider the case when Fi is a

uniform distribution on [0, v̄i] for i = 1,2. As Sahuguet (2006) has shown, the

equilibrium strategies for this asymmetric all-pay auction are

b1(v) =
v̄1v̄2

v̄1 + v̄2

( v
v̄1

) v̄1+v̄2
v̄1 and b2(v) =

v̄1v̄2

v̄1 + v̄2

( v
v̄2

) v̄1+v̄2
v̄2 .

Thus, players’ expected expenditures and total expected expenditures are

E1(v̄1, v̄2) =
∫ v̄1

0
b1(v)

1
v̄1

dv =
v̄2

v̄1 + v̄2

v̄2
1

2v̄1 + v̄2
,

E2(v̄1, v̄2) =
∫ v̄2

0
b2(v)

1
v̄2

dv =
v̄1

v̄1 + v̄2

v̄2
2

v̄1 +2v̄2
, and

R(v̄1, v̄2) =
v̄2

v̄1 + v̄2

v̄2
1

2v̄1 + v̄2
+

v̄1

v̄1 + v̄2

v̄2
2

v̄1 +2v̄2
.

Letting a≡ v̄1 + v̄2 and r ≡ v̄2/v̄1, we get

R =
ar(1+4r+ r2)

(1+ r)2(2+ r)(1+2r)
.

Hence, ∂R/∂a > 0 and

∂R
∂ r

=
2a(1− r)(1+8r+15r2 +8r3 + r4)

(1+ r)3(2+ r)2(1+2r)2 ≥ 0
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for r ≤ 1. Thus, the absolute effect is positive, and the relative effect is negative

(since r decreases as asymmetry increases) except for r = 1.

We next turn to more general distributions. We adopt the tractable incom-

plete information model of Kirkegaard (2012, 2013) and assume that Fi(v) =

F(v/v̄i) for i = 1,2, where F is a distribution whose density function f is posi-

tive on its support [0,1]. We assume further, as frequently done in the literature,

that the hazard rate (i.e., the failure rate) f (w)/(1−F(w)) is increasing. Note

that a distribution F that satisfies this property is said to be IFR. Examples of

IFR distributions are exponential, uniform, normal, logistic, power (for c ≥ 1),

Weibull (for c≥ 1), and gamma (for c≥ 1).5

Let ri ≡ v̄ j/v̄i denote player i’s relative weakness with respect to player j.6

Thus, the ratio r defined earlier is player 1’s relative weakness, i.e., r1 = r and

r2 = 1/r. In addition, let vs
i ≡ vi/v̄i denote player i’s “scale-adjusted” valua-

tion and let ks
i j(v

s
i ) denote the scale-adjusted valuation of player j that player i

with scale-adjusted valuation vs
i would tie with in the all-pay auction. By substi-

tuting the scale-adjusted valuations into Amann and Leininger’s (1996) original

formula, the function ks
i j(v

s
i ) is implicitly defined by

∫ 1

ks
i j(v

s
i )

f (x)
x

dx = ri

∫ 1

vs
i

f (x)
x

dx. (∗)

Kirkegaard (2013) showed in his lemma 2 that Ei(v̄i, v̄ j) = v̄iEs(ri) where

Es(ri) = ri

∫ 1

0
ks

i j(v
s
i )[1−F(vs

i )] f (v
s
i )dvs

i .

He also showed that (as suppressing the subscripts for notational simplicity)

E ′s(r) =
1
2

(∫ 1

0
ks(vs)vs

[∫ 1

vs

f (x)
vs dx−

∫ 1

vs

f (x)
x

dx
]

f (vs)dvs +A(r)
)
,

5Here, c is the shape parameter.
6Note that ri is lower when player i is stronger than player j, i.e., v̄i is higher relative to v̄ j .
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where

A(r) =
∫ 1

0
ks(vs)[1−F(vs)]

∫ 1

vs

f (x)
x

dx
(

1− r f (vs)

f (ks(vs))

)
dvs.

Note that the first term in the expression for E ′s(r) is positive since the difference

in the bracket is positive. When r = 1, we have ks(vs) = vs. Thus, A(1) = 0 and

so E ′s(1)> 0.

Now, we have

R = v̄1Es(r1)+ v̄2Es(r2) =
a

1+ r
Es(r)+

ar
1+ r

Es(1/r),

using our transformation v̄1 = a/(1+ r) and v̄2 = ar/(1+ r). Hence,

∂R
∂a

=
1

1+ r
Es(r)+

r
1+ r

Es(1/r)> 0

and so the absolute effect is positive. Next,

∂R
∂ r

=
a

1+ r

(
E ′s(r)−

1
r

E ′s(1/r)
)
− a

(1+ r)2

(
Es(r)−Es(1/r)

)
.

It is easy to see that the relative effect is equal to zero when r = 1, i.e., when

players are symmetric. How about the relative effect for r < 1? To see this, we

first derive E ′′s (r). We have

E ′′s (r) =
1
2

(∫ 1

0

∂ks(vs)

∂ r
vs
[∫ 1

vs

f (x)
vs dx−

∫ 1

vs

f (x)
x

dx
]

f (vs)dvs +A′(r)
)
,

where

A′(r) =
∫ 1

0

∂ks(vs)

∂ r
[1−F(vs)]

∫ 1

vs

f (x)
x

dx
(

1− r f (vs)

f (ks(vs))

)
dvs

+
∫ 1

0
ks(vs)[1−F(vs)]

×
∫ 1

vs

f (x)
x

dx
(
− f (vs)

f (ks(vs))
+

r f (vs) f ′(ks(vs)) ∂ks(vs)
∂ r

f (ks(vs))2

)
dvs.
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Since (i) ks(vs) = vs when r = 1 and (ii) the equation (∗) implies

∂ks(vs)

∂ r
=− ks(vs)

f (ks(vs))

∫ 1

vs

f (x)
x

dx,

we get

A′(1) =−
∫ 1

0
vs[1−F(vs)]

∫ 1

vs

f (x)
x

dx
(

1+
vs f ′(vs)

∫ 1
vs

f (x)
x dx

f (vs)2

)
dvs

and

E ′′s (1)=
1
2

(
−
∫ 1

0

(vs)2

f (vs)

∫ 1

vs

f (x)
x

dx
[∫ 1

vs

f (x)
vs dx−

∫ 1

vs

f (x)
x

dx
]

f (vs)dvs+A′(1)
)
.

Thus, we see that E ′′s (1)< 0 if A′(1)< 0, or,

B≡
∫ 1

0
w(1−F(w))

∫ 1

w

f (x)
x

dx
(

1+
w f ′(w)

∫ 1
w

f (x)
x dx

f (w)2

)
dw > 0.

We have:

Lemma 1. B > 0 when F is IFR.

Proof: Let a(w)≡
∫ 1

w
f (x)

x dx. If f ′(w)≥ 0, then obviously 1+w f ′(w)a(w)/ f (w)2 >

0. If f ′(w)< 0, then

1+
w f ′(w)a(w)

f (w)2 ≥ 1+
1−F(w)

w
w f ′(w)
f (w)2 =

1
f (w)2

(
f (w)2+ f ′(w)(1−F(w))

)
≥ 0,

where the first inequality follows from the fact that (1−F(w))/w ≥ a(w) and

the second inequality follows from the fact that

d
dw

( f (w)
1−F(w)

)
=

f ′(w)(1−F(w))+ f (w)2

(1−F(w))2 ≥ 0

since F is IFR. Thus, B > 0. Q.E.D.
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Hence, we have E ′′s (1)< 0. Next, since

∂ 2R
∂ r2 =

a
1+ r

(
E ′′s (r)+

1
r2 E ′s(1/r)+

1
r3 E ′′s (1/r)

)
− a
(1+ r)2

(
2E ′s(r)−

1
r

E ′s(1/r)+
1
r2 E ′s(1/r)

)
+

2a
(1+ r)3

(
Es(r)−Es(1/r)

)
,

we have ∂ 2R/∂ r2 = aE ′′s (1)< 0 when r = 1. Recall that ∂R/∂ r = 0 when r = 1.

Therefore, ∂R/∂ r > 0, i.e., the relative effect is negative, for r smaller than but

sufficiently close to 1.

Summarizing the discussion, we have:

Proposition 2. For all-pay auctions under incomplete information, (i) the ab-

solute effect is positive, whereas (ii) the relative effect is zero when r = 1 and

negative for r sufficiently close to 1.

4. THE OPTIMAL ALL-PAY AUCTION DESIGN

We now study the optimal all-pay auction design problem for this environ-

ment. Following Myerson (1981), let pi(v1,v2) denote the probability that player

i gets the prize when the valuations are given by v1 and v2, and let qi(vi) denote

the conditional probability that i gets the prize when his valuation is vi. Since

each player exerts an expenditure whether or not he wins the prize, i.e., the ex-

penditure is an unconditional commitment in the terminology of Amann and

Leininger (1996), player i’s payment depends only on vi, so let xi(vi) denote

player i’s payment. We additionally require that p1(v1,v2)+ p2(v1,v2) = 1 for

all v1 and v2. That is, the prize is always awarded to one of the players.7 Other

than these features, it is a standard exercise to derive an optimal mechanism.

7Thus, the mechanism we consider is constrained optimal. In a fully optimal mechanism, the
prize may sometimes be withheld.



76 ON ASYMMETRY IN ALL-PAY AUCTIONS

Note first that, for any given qi(vi), we have

xi(vi) = qi(vi)vi−
∫ vi

0
qi(s)ds

from the definition of player i’s expected payoff Ui(vi)≡ qi(vi)vi−xi(vi) and the

well-established fact that Ui(vi) =
∫ vi

0 qi(s)ds. Next, let

ci(vi) = vi−
1−Fi(vi)

fi(vi)

denote player i’s virtual valuation. Note that it is increasing since we assume that

F is IFR. In an optimal mechanism, the prize has to be awarded to the player with

the highest virtual valuation. Thus, for i = 1,2 and j 6= i,

qi(vi) = Pr[ci(vi)> c j(v j)] = Fj(c−1
j (ci(vi))).

Let us first consider the case when Fi is a uniform distribution on [0, v̄i] for

i= 1,2. Then, we have ci(vi) = 2vi− v̄i. Figure 1 depicts the shapes of the virtual

valuations for the uniform case.
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We can derive that

q1(v1) =


0 if 0≤ v1 <

v̄1−v̄2
2 ;

2v1−v̄1+v̄2
2v̄2

if v̄1−v̄2
2 ≤ v1 <

v̄1+v̄2
2 ;

1 if v̄1+v̄2
2 ≤ v1 ≤ v̄1,

q2(v2) =
2v2 + v̄1− v̄2

2v̄1
for 0≤ v2 ≤ v̄2.

This gives us

x1(v1) =


0 if 0≤ v1 <

v̄1−v̄2
2 ;

v2
1

2v̄2
− (v̄1−v̄2)

2

8v̄2
if v̄1−v̄2

2 ≤ v1 <
v̄1+v̄2

2 ;
v̄1
2 if v̄1+v̄2

2 ≤ v1 ≤ v̄1,

x2(v2) =
v2

2
2v̄1

for 0≤ v2 ≤ v̄2.

Thus, players’ expected expenditures and total expected expenditures in an opti-

mal mechanism are

E∗1 (v̄1, v̄2) =
3v̄2

1− v̄2
2

12v̄1
, E∗2 (v̄1, v̄2) =

v̄2
2

6v̄1
, and R∗(v̄1, v̄2) =

3v̄2
1 + v̄2

2
12v̄1

.

Using our transformation of v̄1 = a/(1+ r) and v̄2 = ar/(1+ r), we get

R∗(v̄1, v̄2) =
a(3+ r2)

12(1+ r)
.

Hence, ∂R∗/∂a > 0 and

∂R∗

∂ r
=

a(r−1)(r+3)
12(1+ r)2 ≤ 0

for r ≤ 1. That is, the absolute effect is positive, and the relative effect is also
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positive (since r decreases as asymmetry increases) except for r = 1.

Observe that the sign of the relative effect in the optimal mechanism is op-

posite to that in the all-pay auction. This is because, as Myerson (1981) already

observed, total expenditures may be increased in optimal mechanisms by giving

a bid preference (or, favor) to the weak player whose valuation for the prize is

lower. Put differently, competition may be made fiercer by leveling the field.

We next turn to more general distributions. Let ti j(vi) denote the valuation

of player j such that ci(vi) = c j(ti j(vi)) holds. That is, ti j(vi) is the valuation of

player j whose virtual valuation is the same as that of player i with valuation vi.

In addition, let ts
i j(v

s
i ) denote the scale-adjusted valuation of player j that player i

with scale-adjusted valuation vs
i would tie with in terms of the virtual valuation.

Since player i’s expected expenditure in any mechanism for a given qi(vi) is

∫ v̄i

0
xi(vi) fi(vi)dvi =

∫ v̄i

0

(
qi(vi)vi−

∫ vi

0
qi(s)ds

)
fi(vi)dvi =

∫ v̄i

0
ci(vi)qi(vi) fi(vi)dvi

where the second equality obtains by interchanging the order of integration and

qi(vi) = Fj(ti j(vi)) in an optimal mechanism,

E∗i (v̄i, v̄ j) =
∫ v̄i

0
ci(vi)Fj(ti j(vi)) fi(vi)dvi.

We have:

Lemma 2. Player i’s expected expenditure in an optimal mechanism can be

written as

E∗i (v̄i, v̄ j) = v̄iE∗s (ri)

where

E∗s (ri)=
1
ri

∫ 1

0
vs

i [1−F(vs
i )]

2 f (vs
i )

2 + f ′(vs
i )[1−F(vs

i )]

2 f (ts
i j(v

s
i ))

2 + f ′(ts
i j(v

s
i ))[1−F(ts

i j(v
s
i ))]

f (ts
i j(v

s
i ))

3

f (vs
i )

2 dvs
i .



KIHO YOON 79

Proof: Observe first that

E∗i (v̄i, v̄ j) =
∫ v̄i

0

(
vi−

1−Fi(vi)

fi(vi)

)
Fj(ti j(vi)) fi(vi)dvi

= v̄i

∫ v̄i

0

(vi

v̄i
−

1−F( vi
v̄i
)

f ( vi
v̄i
)

)
F
( ti j(vi)

v̄ j

) 1
v̄i

f
(vi

v̄i

)
dvi

= v̄i

∫ 1

0

(
vs

i −
1−F(vs

i )

f (vs
i )

)
F(ts

i j(v
s
i )) f (vs

i )dvs
i

= v̄i

∫ 1

0
vs

i [1−F(vs
i )]

dF(ts
i j(v

s
i ))

dvs
i

dvs
i

where the first equality follows from the definition of ci(vi), the second equality

follows from Fi(vi) = F(vi/v̄i), the third equality follows from the definition of

the scale-adjusted valuation vs
i = vi/v̄i and the fact that ts

i j(v
s
i )= ti j(vi)/v̄ j, and the

last equality follows from integration by parts. Note well that we have ts
i j(v

s
i ) =

ti j(vi)/v̄ j since c j(ti j(vi)) = ci(vi) and c j(v̄ jts
i j(v

s
i )) = ci(v̄ivs

i ) by definition, and

hence ti j(vi) = (c−1
j ◦ ci)(vi) = (c−1

j ◦ ci)(v̄ivs
i ) = v̄ jts

i j(v
s
i ).

We next derive dF(ts
i j(v

s
i ))/dvs

i explicitly. From ci(vi) = c j(ti j(vi)), we have

dti j(vi)

dvi
=

c′i(vi)

c′j(ti j(vi))
=

2 fi(vi)
2 + f ′i (vi)[1−Fi(vi)]

2 f j(ti j(vi))2 + f ′j(ti j(vi))[1−Fj(ti j(vi))]

f j(ti j(vi))
2

fi(vi)2 .

Hence, we can easily derive

dts
i j(v

s
i )

dvs
i

=
v̄i

v̄ j

dti j(v̄ivs
i )

dvi
=

1
ri

2 f (vs
i )

2 + f ′(vs
i )[1−F(vs

i )]

2 f (ts
i j(v

s
i ))

2 + f ′(ts
i j(v

s
i ))[1−F(ts

i j(v
s
i ))]

f (ts
i j(v

s
i ))

2

f (vs
i )

2

using the identities ts
i j(v

s
i ) = ti j(v̄ivs

i )/v̄ j and Fi(v) = F(v/v̄i). Therefore,

dF(ts
i j(v

s
i ))dvs

i = f (ts
i j(v

s
i ))

dts
i j(v

s
i )

dvs
i

=
1
ri

2 f (vs
i )

2 + f ′(vs
i )[1−F(vs

i )]

2 f (ts
i j(v

s
i ))

2 + f ′(ts
i j(v

s
i ))[1−F(ts

i j(v
s
i ))]

f (ts
i j(v

s
i ))

3

f (vs
i )

2 .

This gives the desired result. Q.E.D.
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Now, we have

R∗ = v̄1E∗s (r1)+ v̄2E∗s (r2) =
a

1+ r
E∗s (r)+

ar
1+ r

E∗s (1/r)

using our transformation v̄1 = a/(1+ r) and v̄2 = ar/(1+ r) and so

∂R∗

∂a
=

1
1+ r

E∗s (r)+
r

1+ r
E∗s (1/r)

and

∂R∗

∂ r
=

a
1+ r

(
E∗
′

s (r)− 1
r

E∗
′

s (1/r)
)
− a

(1+ r)2

(
E∗s (r)−E∗s (1/r)

)
.

The absolute effect is positive since E∗s (r) > 0 when the distribution F is IFR.

(See the proof of Lemma 1.) The relative effect is zero, i.e., ∂R∗/∂ r = 0, when

r = 1. To see the relative effect for r < 1, we need to investigate the sign of

E∗
′′

s (1) again since ∂ 2R∗/∂ r2 = aE∗
′′

s (1) when r = 1.

From ci(vi) = c j(ti j(vi)), i.e.,

vi−
1−Fi(vi)

fi(vi)
= ti j(vi)−

1−Fj(ti j(vi))

f j(ti j(vi))

and Fi(vi) = F(vi/v̄i), we get

vi−
1−F(vi/v̄i)

f (vi/v̄i)/v̄i
= ti j(vi)−

1−F(ti j(vi)/v̄ j)

f (ti j(vi)/v̄ j)/v̄ j
.

Since vs
i = vi/v̄i and ts

i j(v
s
i ) = ti j(vi)/v̄ j,8 we have

v̄i

(
vs

i −
1−F(vs

i )

f (vs
i )

)
= v̄ j

(
ts
i j(v

s
i )−

1−F(ts
i j(v

s
i ))

f (ts
i j(v

s
i ))

)
,

or

ri

(
ts
i j(v

s
i )−

1−F(ts
i j(v

s
i ))

f (ts
i j(v

s
i ))

)
= vs

i −
1−F(vs

i )

f (vs
i )

.

8See the proof of Lemma 2.
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This gives us
∂ ts

i j(v
s
i )

∂ ri
=−

c(ts
i j(v

s
i ))

ric′(ts
i j(v

s
i ))

.

This implies that E∗
′′

s (r) in general involves terms containing f ′′ and f ′′′. There-

fore, we cannot draw an unambiguous conclusion concerning the sign of E∗
′′

s (1).

Summarizing the discussion, we have:

Proposition 3. For optimal all-pay auction mechanisms under incomplete in-

formation, (i) the absolute effect is positive, whereas (ii) the relative effect may

be either positive or negative.

5. DISCUSSION

We have examined the role of asymmetry in all-pay auctions. We have shown

that the absolute effect is always positive under both complete and incomplete in-

formation. We have also shown that the relative effect is negative under complete

information, but that it is equal to zero when r = 1 and negative for r sufficiently

close to 1 under incomplete information.

The general analysis under incomplete information was built upon the model

of Kirkegaard (2012, 2013) that incorporates asymmetry in a particularly tractable

way. Since incomplete information may be modeled in different ways, the re-

sults in this paper should be read appropriately. Observe that, when player 1’s

valuation slightly increases starting from symmetry, we have ∂R(v̄1, v̄2)/∂ v̄1 > 0

since ∂R/∂a > 0 and ∂R/∂ r = 0 at r = 1. This is the main result of Kirkegaard

(2013).9 However, total expected expenditures may decrease in v̄1 when players

are sufficiently asymmetric. For instance, when the distribution is uniform, it is

straightforward to obtain that ∂R(v̄1, v̄2)/∂ v̄1 < 0 when (v̄1, v̄2) = (13,1).

Kirkegaard (2013) is concerned with the total effect, i.e., the sum of the

absolute effect and the relative effect, on total expected expenditures. His main

point is that the total effect may be positive under incomplete information, which

contrasts with the fact that the total effect is negative under complete informa-

9See Proposition 1 of Kirkegaard (2013).
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tion. In comparison, our main point is that the relative effect is negative under

both complete and incomplete information. We have also analyzed the optimal

all-pay auction design problem. The main finding is that the relative effect is

positive for the uniform distribution but may be either positive or negative for

general distributions.

It would be desirable to extend the analysis of asymmetry in all-pay auctions

to the case of more than two players. But, this seems to be a difficult task since

even the equilibrium characterizations are elusive as Parreiras and Rubinchik

(2010) have demonstrated.
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